@Article{info:doi/10.2196/70420, author="Quon, Stephanie and Zhou, Sarah", title="Enhancing AI-Driven Medical Translations: Considerations for Language Concordance", journal="JMIR Med Educ", year="2025", month="Apr", day="11", volume="11", pages="e70420", keywords="letter to the editor", keywords="ChatGPT", keywords="AI", keywords="artificial intelligence", keywords="language", keywords="translation", keywords="health care disparity", keywords="natural language model", keywords="survey", keywords="patient education", keywords="accessibility", keywords="preference", keywords="human language", keywords="communication", keywords="language-concordant care", doi="10.2196/70420", url="https://mededu.jmir.org/2025/1/e70420" } @Article{info:doi/10.2196/71721, author="Teng, Joyce and Novoa, Andres Roberto and Aleshin, Alexandrovna Maria and Lester, Jenna and Seiger, Kira and Dzuali, Fiatsogbe and Daneshjou, Roxana", title="Authors' Reply: Enhancing AI-Driven Medical Translations: Considerations for Language Concordance", journal="JMIR Med Educ", year="2025", month="Apr", day="11", volume="11", pages="e71721", keywords="ChatGPT", keywords="artificial intelligence", keywords="language", keywords="translation", keywords="health care disparity", keywords="natural language model", keywords="survey", keywords="patient education", keywords="accessibility", keywords="preference", keywords="human language", keywords="communication", keywords="language-concordant care", doi="10.2196/71721", url="https://mededu.jmir.org/2025/1/e71721" } @Article{info:doi/10.2196/72998, author="Zhang, Manlin and Zhao, Tianyu", title="Citation Accuracy Challenges Posed by Large Language Models", journal="JMIR Med Educ", year="2025", month="Apr", day="2", volume="11", pages="e72998", keywords="chatGPT", keywords="medical education", keywords="Saudi Arabia", keywords="perceptions", keywords="knowledge", keywords="medical students", keywords="faculty", keywords="chatbot", keywords="qualitative study", keywords="artificial intelligence", keywords="AI", keywords="AI-based tools", keywords="universities", keywords="thematic analysis", keywords="learning", keywords="satisfaction", keywords="LLM", keywords="large language model", doi="10.2196/72998", url="https://mededu.jmir.org/2025/1/e72998" } @Article{info:doi/10.2196/73698, author="Temsah, Mohamad-Hani and Al-Eyadhy, Ayman and Jamal, Amr and Alhasan, Khalid and Malki, H. Khalid", title="Authors' Reply: Citation Accuracy Challenges Posed by Large Language Models", journal="JMIR Med Educ", year="2025", month="Apr", day="2", volume="11", pages="e73698", keywords="ChatGPT", keywords="Gemini", keywords="DeepSeek", keywords="medical education", keywords="AI", keywords="artificial intelligence", keywords="Saudi Arabia", keywords="perceptions", keywords="medical students", keywords="faculty", keywords="LLM", keywords="chatbot", keywords="qualitative study", keywords="thematic analysis", keywords="satisfaction", keywords="RAG retrieval-augmented generation", doi="10.2196/73698", url="https://mededu.jmir.org/2025/1/e73698" } @Article{info:doi/10.2196/72336, author="Bland, Tyler", title="Author's Reply: Examining Multimodal AI Resources in Medical Education: The Role of Immersion, Motivation, and Fidelity in AI Narrative Learning", journal="JMIR Med Educ", year="2025", month="Mar", day="18", volume="11", pages="e72336", keywords="artificial intelligence", keywords="cinematic clinical narrative", keywords="cinemeducation", keywords="medical education", keywords="narrative learning", keywords="pharmacology", keywords="AI", keywords="medical students", keywords="preclinical education", keywords="long-term retention", keywords="AI tools", keywords="GPT-4", keywords="image", keywords="applicability", keywords="CCN", doi="10.2196/72336", url="https://mededu.jmir.org/2025/1/e72336" } @Article{info:doi/10.2196/72190, author="Jacobs, Chris", title="Examining Multimodal AI Resources in Medical Education: The Role of Immersion, Motivation, and Fidelity in AI Narrative Learning", journal="JMIR Med Educ", year="2025", month="Mar", day="18", volume="11", pages="e72190", keywords="artificial intelligence", keywords="cinematic clinical narrative", keywords="cinemeducation", keywords="medical education", keywords="narrative learning", keywords="AI", keywords="medical students", keywords="preclinical education", keywords="long-term retention", keywords="pharmacology", keywords="AI tools", keywords="GPT-4", keywords="image", keywords="applicability", keywords="CCN", doi="10.2196/72190", url="https://mededu.jmir.org/2025/1/e72190" } @Article{info:doi/10.2196/56117, author="Sekhar, C. Tejas and Nayak, R. Yash and Abdoler, A. Emily", title="A Use Case for Generative AI in Medical Education", journal="JMIR Med Educ", year="2024", month="Jun", day="7", volume="10", pages="e56117", keywords="medical education", keywords="med ed", keywords="generative artificial intelligence", keywords="artificial intelligence", keywords="GAI", keywords="AI", keywords="Anki", keywords="flashcard", keywords="undergraduate medical education", keywords="UME", doi="10.2196/56117", url="https://mededu.jmir.org/2024/1/e56117" } @Article{info:doi/10.2196/58370, author="Pendergrast, Tricia and Chalmers, Zachary", title="Authors' Reply: A Use Case for Generative AI in Medical Education", journal="JMIR Med Educ", year="2024", month="Jun", day="7", volume="10", pages="e58370", keywords="ChatGPT", keywords="undergraduate medical education", keywords="large language models", doi="10.2196/58370", url="https://mededu.jmir.org/2024/1/e58370" } @Article{info:doi/10.2196/58743, author="De Martinis, Massimo and Ginaldi, Lia", title="Digital Skills to Improve Levels of Care and Renew Health Care Professions", journal="JMIR Med Educ", year="2024", month="May", day="1", volume="10", pages="e58743", keywords="digital competence", keywords="telehealth", keywords="nursing", keywords="health care workforce", keywords="health care professionals", keywords="informatics", keywords="education", keywords="curriculum", keywords="interdisciplinary education", keywords="health care education", doi="10.2196/58743", url="https://mededu.jmir.org/2024/1/e58743" } @Article{info:doi/10.2196/57696, author="Dsouza, Maria Jeanne", title="A Student's Viewpoint on ChatGPT Use and Automation Bias in Medical Education", journal="JMIR Med Educ", year="2024", month="Apr", day="15", volume="10", pages="e57696", keywords="AI", keywords="artificial intelligence", keywords="ChatGPT", keywords="medical education", doi="10.2196/57696", url="https://mededu.jmir.org/2024/1/e57696" } @Article{info:doi/10.2196/50902, author="Toohey, Shannon and Wray, Alisa and Hunter, John and Saadat, Soheil and Boysen-Osborn, Megan and Smart, Jonathan and Wiechmann, Warren and Pressman, D. Sarah", title="Authors' Response to the Validity of Cortisol and Galvanic Skin Responses for Measuring Student Stress During Training", journal="JMIR Med Educ", year="2023", month="Aug", day="18", volume="9", pages="e50902", keywords="augmented reality", keywords="AR", keywords="salivary cortisol", keywords="galvanic skin conductance", keywords="medical simulation", keywords="medical education", doi="10.2196/50902", url="https://mededu.jmir.org/2023/1/e50902", url="http://www.ncbi.nlm.nih.gov/pubmed/37594800" } @Article{info:doi/10.2196/45340, author="Sonawane, Urvi and Kasetti, Pragna", title="How Valid Are Cortisol and Galvanic Skin Responses in Measuring Student Stress During Training? Comment on the Psychological Effects of Simulation Training", journal="JMIR Med Educ", year="2023", month="Aug", day="18", volume="9", pages="e45340", keywords="augmented reality", keywords="AR", keywords="salivary cortisol", keywords="galvanic skin conductance", keywords="medical simulation", keywords="medical education", doi="10.2196/45340", url="https://mededu.jmir.org/2023/1/e45340", url="http://www.ncbi.nlm.nih.gov/pubmed/37594784" } @Article{info:doi/10.2196/50109, author="Ozair, Ahmad and Bhat, Vivek and Detchou, E. Donald K.", title="Authors' Reply to: Additional Considerations for US Residency Selection After Pass/Fail USMLE Step 1. Comment on ``The US Residency Selection Process After the United States Medical Licensing Examination Step 1 Pass/Fail Change: Overview for Applicants and Educators''", journal="JMIR Med Educ", year="2023", month="Aug", day="17", volume="9", pages="e50109", keywords="admission", keywords="assessment", keywords="postgraduate training", keywords="selection", keywords="standardized testing", keywords="graduate medical education", keywords="medical education", doi="10.2196/50109", url="https://mededu.jmir.org/2023/1/e50109", url="http://www.ncbi.nlm.nih.gov/pubmed/37590044" } @Article{info:doi/10.2196/47763, author="Sow, Yacine and Gangal, Ameya and Yeung, Howa and Blalock, Travis and Stoff, Benjamin", title="Additional Considerations for US Residency Selection After Pass/Fail USMLE Step 1. Comment on ``The US Residency Selection Process After the United States Medical Licensing Examination Step 1 Pass/Fail Change: Overview for Applicants and Educators''", journal="JMIR Med Educ", year="2023", month="Aug", day="17", volume="9", pages="e47763", keywords="admission", keywords="assessment", keywords="postgraduate training", keywords="selection", keywords="standardized testing", keywords="USMLE", keywords="medical school", keywords="medical students", keywords="residency application", keywords="research training", doi="10.2196/47763", url="https://mededu.jmir.org/2023/1/e47763", url="http://www.ncbi.nlm.nih.gov/pubmed/37590047" } @Article{info:doi/10.2196/50336, author="Gilson, Aidan and Safranek, W. Conrad and Huang, Thomas and Socrates, Vimig and Chi, Ling and Taylor, Andrew Richard and Chartash, David", title="Authors' Reply to: Variability in Large Language Models' Responses to Medical Licensing and Certification Examinations", journal="JMIR Med Educ", year="2023", month="Jul", day="13", volume="9", pages="e50336", keywords="natural language processing", keywords="NLP", keywords="MedQA", keywords="generative pre-trained transformer", keywords="GPT", keywords="medical education", keywords="chatbot", keywords="artificial intelligence", keywords="AI", keywords="education technology", keywords="ChatGPT", keywords="conversational agent", keywords="machine learning", keywords="large language models", keywords="knowledge assessment", doi="10.2196/50336", url="https://mededu.jmir.org/2023/1/e50336", url="http://www.ncbi.nlm.nih.gov/pubmed/37440299" } @Article{info:doi/10.2196/48305, author="Epstein, H. Richard and Dexter, Franklin", title="Variability in Large Language Models' Responses to Medical Licensing and Certification Examinations. Comment on ``How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment''", journal="JMIR Med Educ", year="2023", month="Jul", day="13", volume="9", pages="e48305", keywords="natural language processing", keywords="NLP", keywords="MedQA", keywords="generative pre-trained transformer", keywords="GPT", keywords="medical education", keywords="chatbot", keywords="artificial intelligence", keywords="AI", keywords="education technology", keywords="ChatGPT", keywords="Google Bard", keywords="conversational agent", keywords="machine learning", keywords="large language models", keywords="knowledge assessment", doi="10.2196/48305", url="https://mededu.jmir.org/2023/1/e48305", url="http://www.ncbi.nlm.nih.gov/pubmed/37440293" } @Article{info:doi/10.2196/46876, author="Sabry Abdel-Messih, Mary and Kamel Boulos, N. Maged", title="ChatGPT in Clinical Toxicology", journal="JMIR Med Educ", year="2023", month="Mar", day="8", volume="9", pages="e46876", keywords="ChatGPT", keywords="clinical toxicology", keywords="organophosphates", keywords="artificial intelligence", keywords="AI", keywords="medical education", doi="10.2196/46876", url="https://mededu.jmir.org/2023/1/e46876", url="http://www.ncbi.nlm.nih.gov/pubmed/36867743" } @Article{info:doi/10.2196/37401, author="Balaji, Aanika and Clever, Lou Sarah", title="Authors' Reply to: Techniques to Teach Students Effectively Using Telemedicine. Comment on ``Incorporating Medical Students Into Primary Care Telehealth Visits: Tutorial''", journal="JMIR Med Educ", year="2022", month="Mar", day="11", volume="8", number="1", pages="e37401", keywords="medical student", keywords="education", keywords="primary care", keywords="telehealth", keywords="video visits", keywords="internal medicine", keywords="medical education", keywords="teleconsultation", keywords="digital health", keywords="COVID-19", keywords="teaching", keywords="telemedicine", keywords="clerkships", doi="10.2196/37401", url="https://mededu.jmir.org/2022/1/e37401", url="http://www.ncbi.nlm.nih.gov/pubmed/35191840" } @Article{info:doi/10.2196/30703, author="Kandola, Hardeep and Minhas, Sonica", title="Techniques to Teach Students Effectively Using Telemedicine. Comment on ``Incorporating Medical Students Into Primary Care Telehealth Visits: Tutorial''", journal="JMIR Med Educ", year="2022", month="Mar", day="11", volume="8", number="1", pages="e30703", keywords="medical student", keywords="education", keywords="primary care", keywords="telehealth", keywords="video visits", keywords="internal medicine", keywords="medical education", keywords="teleconsultation", keywords="digital health", keywords="COVID-19", keywords="teaching", keywords="telemedicine", keywords="clerkships", doi="10.2196/30703", url="https://mededu.jmir.org/2022/1/e30703", url="http://www.ncbi.nlm.nih.gov/pubmed/35191846" } @Article{info:doi/10.2196/26790, author="Pan, Myat and San, Myat", title="Innovation and Inequality: A Medical Student Perspective. Comment on ``The Present and Future Applications of Technology in Adapting Medical Education Amidst the COVID-19 Pandemic''", journal="JMIR Med Educ", year="2021", month="Oct", day="4", volume="7", number="4", pages="e26790", keywords="medical education", keywords="technology", keywords="coronavirus", keywords="medical students", keywords="COVID-19", keywords="pandemic", keywords="online lecture", keywords="virtual reality", keywords="education", doi="10.2196/26790", url="https://mededu.jmir.org/2021/4/e26790", url="http://www.ncbi.nlm.nih.gov/pubmed/34081609" } @Article{info:doi/10.2196/29335, author="Wilcha, Robyn-Jenia", title="Author's Reply to: Virtual vs Online: Insight From Medical Students. Comment on ``Effectiveness of Virtual Medical Teaching During the COVID-19 Crisis: Systematic Review''", journal="JMIR Med Educ", year="2021", month="May", day="14", volume="7", number="2", pages="e29335", keywords="virtual teaching", keywords="medical student", keywords="medical education", keywords="COVID-19", keywords="review", keywords="search term", keywords="virus", keywords="pandemic", keywords="quarantine", doi="10.2196/29335", url="https://mededu.jmir.org/2021/2/e29335", url="http://www.ncbi.nlm.nih.gov/pubmed/33852412" } @Article{info:doi/10.2196/27020, author="Kaini, Shahil and Motie, Zahrah Lucinda", title="Virtual vs Online: Insight From Medical Students. Comment on ``Effectiveness of Virtual Medical Teaching During the COVID-19 Crisis: Systematic Review''", journal="JMIR Med Educ", year="2021", month="May", day="14", volume="7", number="2", pages="e27020", keywords="virtual teaching", keywords="medical student", keywords="medical education", keywords="COVID-19", keywords="review", keywords="search term", keywords="virus", keywords="pandemic", keywords="quarantine", doi="10.2196/27020", url="https://mededu.jmir.org/2021/2/e27020", url="http://www.ncbi.nlm.nih.gov/pubmed/33988518" } @Article{info:doi/10.2196/24993, author="Almohtadi, Ahmad and Van, Minh and Seyedzenouzi, Golnoush", title="Medical Students Respond: Question Precision and Gender Differentiation. Comment on ``Understanding Medical Students' Attitudes Toward Learning eHealth: Questionnaire Study''", journal="JMIR Med Educ", year="2021", month="Feb", day="11", volume="7", number="1", pages="e24993", keywords="eHealth", keywords="medical students", keywords="medical education", doi="10.2196/24993", url="https://mededu.jmir.org/2021/1/e24993", url="http://www.ncbi.nlm.nih.gov/pubmed/33570498" }