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Abstract
Background: Generative artificial intelligence (AI) is increasingly used in medical education, including AI-based virtual
patients to improve interview skills. However, how much AI-based assessment (ABA) differs from human-based assessment
(HBA) remains unclear.
Objective: This study aimed to compare the quality of clinical interview assessments generated via an ABA (GPT-o1 Pro
[ABA-o1] and GPT-5 Pro [ABA-5]) with those generated via an HBA conducted by clinical instructors in an AI-based
virtual patient setting. We also examined whether AI reduced evaluation time and assessed agreement across participants with
different levels of clinical experience.
Methods: A standardized case of leg weakness was implemented in an AI-based virtual patient. Seven participants (2 medical
students, 3 residents, and 2 attending physicians) each conducted an interview with the AI patient, and transcripts were
scored using the 25-item Master Interview Rating Scale (0‐125). Three evaluation strategies were compared. First, GPT-o1
Pro and GPT-5 Pro scored each transcript 5 times with different random seeds to test case specificity. Processing time
was logged automatically. Second, 5 blinded clinical instructors independently rated each transcript once using the same
rubric. Third, reliability metrics were applied. For AI, intraclass correlation coefficients (ICCs) quantified repeatability. For
humans, the ICC(2,1) was calculated. Agreement was quantified using the Pearson r, Lin concordance correlation coefficient,
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Bland-Altman limits of agreement, Cronbach α, and ICC. Time efficiency was expressed as mean minutes per transcript and
relative percentage reduction.
Results: Mean interview scores were similar across methods (ABA-o1: mean 52.1, SD 6.9; ABA-5: mean 53.2, SD 6.8; HBA:
mean 53.7, SD 6.8). Agreement between ABA and HBA was strong (r=0.90; concordance correlation coefficient=0.88) with
minimal bias (ABA-o1: mean 0.4, SD 2.7; ABA-5: mean 1.5, SD 5.2; limits of agreement: –4.9 to 5.7 for ABA-o1 and –8.6 to
11.7 for ABA-5). The Cronbach α was 0.81 (ABA-o1), 0.86 (ABA-5), and 0.80 (HBA); the ICC(3,1) was 0.77 (ABA-o1) and
0.82 (ABA-5); and the ICC(2,1) was 0.38 (HBA). The coefficient of variation for ABA was approximately half that of HBA
(6.6% vs 13.9%). Processing time for 5 runs was 4 minutes, 19 seconds for ABA-o1 and 3 minutes, 20 seconds for ABA-5 vs
10 minutes, 16 seconds for physicians, corresponding to 58% and 67.6% reductions, respectively.
Conclusions: ABA-o1 and ABA-5 produced scores closely matching HBA while demonstrating superior consistency and
reliability. In the setting of virtual interview transcripts, these findings suggest that ABA may serve as a valid, rapid, and
scalable alternative to HBA, reducing per-assessment time by over half. Applied strategically, AI-based scoring could enable
timely feedback, improve efficiency, and reduce faculty workload. Further research is needed to confirm generalizability
across broader settings.
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Introduction
Background
Effective clinical interviewing is essential for making correct
diagnoses and building strong relationships with patients [1].
Traditionally, students learn these skills through supervised
practice with real or standardized patients and feedback from
faculty [1]. However, this apprenticeship-style approach is
time-intensive and limits opportunities for deliberate practice
[2].

The assessment component itself also consumes substan-
tial faculty and resident physician (RP) time. In compe-
tency-based medical education (CBME), faculty complete
numerous workplace-based assessment forms; one Canadian
study found a mean of 3 minutes, 6 seconds per entrust-
able professional activity form, adding approximately 18
minutes of extra documentation time for each staff mem-
ber every 4-week block [3]. Multiprogram qualitative work
further confirms that the cumulative “assessment burden” is
now viewed as a major threat to sustainability, prompting
programs to redesign processes to reduce administrative load
[4].

Recently, generative artificial intelligence (AI) using
large language models (LLMs) has enabled the creation of
AI-based virtual patients that both converse with learners and
automatically evaluate performance [2,5]. Empirical studies
have shown promising results for AI assessment in free-
text clinical documentation [6], script concordance testing
[7], and objective structured clinical examination (OSCE)
history-taking stations [8]. Many of these systems use
validated rubrics such as the Master Interview Rating Scale
(MIRS) to structure feedback [9]. Nevertheless, the reliabil-
ity and validity of AI-generated ratings remain understudied;
therefore, establishing concordance with expert evaluations is
a prerequisite for educational or licensure use.

Objectives
This study compared AI-based assessment (ABA) scores of
clinical interview performance using GPT-o1 Pro (OpenAI;
ABA-o1) and GPT-5 Pro (OpenAI; ABA-5) with human-
based assessment (HBA) scores. We hypothesized that ABA
scores and HBA scores would exhibit strong concordance
and that ABA scoring would serve as a substitute for HBA
scoring. We also hypothesized that AI would complete
evaluations more rapidly, reducing the assessment burden on
clinicians. A secondary aim was to evaluate agreement across
participants with differing clinical experience and evaluate
whether the use of AI could lead to a measurable reduction in
evaluation time, thereby contributing to overall efficiency in
assessment processes.

Methods
Study Design and Setting
A cross-sectional validation study was conducted. This study
involved 3 medical students (MSs), 3 RPs, and 2 attending
physicians (APs) who participated in standardized clinical
scenarios.
Virtual Patient Scenario
A man aged 27 years presenting with progressive bilateral
leg weakness, particularly proximal, was scripted based
on a published case of thyrotoxic periodic paralysis. The
scenario, created by a general internal medicine specialist
with extensive educational experience drawing directly on
prior literature, included relevant clinical history (eg, recent
myalgias, tremors, diarrhea, and insomnia), red flag cues
(eg, acute onset, muscle weakness, and hypokalemia), and
psychosocial factors (eg, recent immigration and use of herbal
supplements). The case represented a classic presentation of
thyrotoxic periodic paralysis caused by hyperthyroidism. The
patient was implemented as an AI-simulated character using
ChatGPT’s custom generative pretrained transformers.
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Participants
The participants were recruited through convenience
sampling complemented by snowball sampling. MSs
comprised a third-year and a fifth-year student; RPs com-
prised 3 postgraduate year 1 residents; and APs comprised
2 board-certified physicians in internal medicine or general
internal medicine in Japan, each with ≥5 years of clinical
teaching experience.

Each participant conducted a history-taking encounter by
speaking with an AI patient. All conversations were recorded
and transcribed verbatim. As all interviews took place within
the ChatGPT-based simulated patient interface, transcripts
were automatically generated from dialogue logs without
manual correction.
Scoring Instrument
The MIRS from the University of Tennessee was originally
designed to assess 27 items. In this study, 25 of these
items were evaluated based on the available conversational
recordings. Each item was rated on a scale from 0 to 5 (total
possible score: 0‐125) covering domains such as informa-
tion gathering, organization, empathy, and patient-centered
communication. The excluded items were nonverbal behavior
and pace and flow of the interview, which require audiovisual
input to evaluate.
Assessment Methods
The main outcome was the comparison of MIRS scores.

For ABA-o1, each transcript was submitted separately
to GPT-o1 Pro with a base prompt directing it to rate
the encounter using the MIRS and justify each score. This
process was repeated 5 times per transcript, and item-level
and total scores were averaged across runs. For ABA-5, using
the same base prompt, the 7 transcripts were scored in 2
batch submissions rather than individually. Run 1 included
MS 1, MS 2, RP 1, and RP 2, and run 2 included RP
3, AP 1, and AP 2. For each batch, the prompt explicitly
stated that it contained 4 interview transcripts (run 1) or 3
interview transcripts (run 2). For each participant within a
batch, item-level and total MIRS scores were extracted from
the model’s output. The base prompt and model settings were
held constant across runs, and the full prompt is provided in
Multimedia Appendix 1 to support reproducibility. For both
ABA-o1 and ABA-5, reproducibility was further examined by
scoring each transcript 5 times using different random seeds.

For HBA, 5 blinded clinical instructors independently
rated each transcript using the same MIRS rubric. All
assessors were board certified in general internal medicine
or general medicine in Japan, actively involved in medical
education, and coauthors of this study (Y Tokushima, TS,
RW, TM, and FS). Item-level and total scores were averaged
across the 5 raters. To further ensure calibration beyond
the preparatory webinar, raters briefly discussed scoring
rationales for sample transcripts to reach consensus on the
interpretation of rubric items.

The secondary outcome was the comparison of assessment
time, which was assessed as follows:

• Physician scoring time for HBA—a stopwatch
measured the time from transcript review to completion
of scoring.

• AI scoring time for ABA-o1—the elapsed time was
automatically recorded for each of the 7 individual
submissions from prompt submission to receipt of the
complete output.

• AI scoring time for ABA-5—the elapsed time was
automatically recorded for each of the 2 batch
submissions from prompt submission to receipt of the
complete output.

For all 3 methods, mean assessment time and SD were
calculated, and absolute and relative time savings of ABA
vs HBA were reported.

Statistical Analysis
All analyses used R (version 4.3.1; R Foundation for
Statistical Computing). Descriptive statistics (mean and
SD and coefficient of variation [CV]) summarized the
scores. Agreement was assessed using the Pearson correla-
tion coefficient (r) for linear associations; the Lin concord-
ance correlation coefficient (CCC) for both correlation and
bias, summarizing overall agreement in a single index; and
Bland-Altman analysis for bias and limits of agreement
(LoA).

Reliability metrics included the Cronbach α for internal
consistency, and intraclass correlation coefficients (ICCs)
were calculated to quantify (1) repeatability across the 5
independent GPT-o1 Pro and GPT-5 Pro runs (stability of
scores when the same model was applied repeatedly to the
same transcript) and (2) interrater reliability across the 5
physician raters (agreement among different human raters).
A 2-sided α of <.05 denoted significance.
Ethical Considerations
Ethics approval was obtained from the Juntendo University
institutional review board (approval E24-0314-U02). All
participants provided written informed consent before taking
part. To protect participants’ privacy and confidentiality, all
interview transcripts and performance scores were deidenti-
fied prior to evaluation and analysis by assigning study IDs
and removing any potentially identifying information. Only
deidentified transcripts were shared with the physician raters,
and results are reported in aggregate. Study data were stored
on password-protected, access-restricted institutional systems,
and only the research team had access. Participants received
no financial compensation for participation.

Results
Participant Scores
Table 1 summarizes the interview scores obtained via
ABA-o1, ABA-5, and HBA. Across all 7 participants,
group-level means were 53.7 (SD 6.8) for HBA, 53.2
(SD 9.2) for ABA-5, and 52.1 (SD 6.9) for ABA-01.
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Within-participant variability (mean CV percentage) was
similar for the 2 automated methods (ABA-o1=6.6%;
ABA-5=6.6%) and higher for HBA (13.9%). Individual-
level differences were generally small, although notable

divergences arose for RP 2 when comparing HBA vs ABA-o1
(46.8 vs 53.4; Δ=6.6) and for AP 2 when comparing ABA-5
vs HBA (67.8 vs 58.8; Δ=9.0) and ABA-5 vs ABA-o1 (67.8
vs 55.6; Δ=12.2).

Table 1. Mean scores by method and participant (n=7).
Participant HBAa ABA-o1b ABA-5c

Score (0-125),
mean (SD)

CVd (%) Score (0-125),
mean (SD)

CV (%) Score (0-125),
mean (SD)

CV (%)

Medical student 1 48.0 (8.9) 18.5 46.4 (2.4) 5.2 46.0 (1.9) 4.1
Medical student 2 65.0 (9.7) 15.0 63.6 (5.1) 8.1 64.6 (4.2) 6.5
Resident physician 1 47.0 (2.9) 6.2 46.8 (2.9) 6.1 50.0 (2.6) 5.3
Resident physician 2 53.4 (7.2) 13.4 46.8 (3.3) 7.2 51.0 (7.1) 14.0
Resident physician 3 47.2 (3.6) 7.6 47.6 (2.7) 5.7 44.0 (1.0) 2.3
Attending physician 1 56.4 (9.4) 16.7 58.0 (5.4) 9.3 49.2 (2.6) 5.3
Attending physician 2 58.8 (11.7) 19.8 55.6 (2.7) 4.9 67.8 (6.2) 9.1
All 53.7 (6.8) 13.9 52.1 (6.9) 6.6 53.2 (9.2) 6.6

aHBA: human-based assessment.
bABA-o1: artificial intelligence–based assessment (ABA) using GPT-o1 Pro.
cABA-5: ABA using GPT-5 Pro.
dCV: coefficient of variation.

Agreement and Reliability Across ABA-
o1, ABA-5, and HBA
Agreement and reliability were evaluated across the 3 rating
methods (ABA-o1, ABA-5, and HBA). Pairwise concordance
with HBA was high for both AI variants: ABA-o1 vs HBA
showed a Pearson correlation coefficient (r) of 0.90 (95%

CI 0.78‐0.96) and CCC of 0.88; ABA-5 vs HBA showed
an r of 0.87 (95% CI 0.72‐0.94) and CCC of 0.86. Concord-
ance between the 2 AI pipelines was the highest (ABA-o1
vs ABA-5: r=0.98, 95% CI 0.95‐0.99; CCC=0.98), indicating
near interchangeability of the AI variants (Table 2). Internal
consistency followed the same pattern: Cronbach α was 0.81,
0.86, and 0.80 for ABA-o1, ABA-5, and HBA, respectively.

Table 2. Correlation, concordance, and internal consistency between artificial intelligence–based assessment (ABA) and human-based assessment
(HBA) scores. Higher values indicate stronger association or consistency.
Comparison Number of items Pearson r (95% CI) Lin CCCa

ABA-o1b vs HBA 25 0.90 (0.78‐0.96) 0.88
ABA-5c vs HBA 25 0.87 (0.72‐0.94) 0.86
ABA-o1 vs ABA-5 25 0.98 (0.95‐0.99) 0.98

aCCC: concordance correlation coefficient.
bABA-o1: ABA using GPT-o1 Pro.
cABA-5: ABA using GPT-5 Pro.

All correlations were significant (2-sided P<.001). Bland-
Altman analyses comparing each ABA with HBA showed
small positive mean biases (ABA-o1 vs HBA: +0.43 [SD of
differences 2.70]; ABA-5 vs HBA: +1.54[SD of differences

5.17]), with 95% LoA of −4.87 to 5.72 and −8.60 to 11.68,
respectively; no proportional bias was observed in either
comparison (Figures 1A and 1B).
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Figure 1. Bland-Altman plots comparing artificial intelligence–based assessment (ABA) with human-based assessment (HBA): (A) ABA using
GPT-o1 Pro (ABA-o1) vs HBA (mean bias 0.43 [SD of differences 2.70]; limits of agreement [LoA]=−4.87 to 5.72) and (B) ABA using GPT-5 Pro
(ABA-5) vs HBA (mean bias 1.54 [SD of differences 5.17]; LoA=−8.60 to 11.68). The points indicate participants (×). The solid line shows the mean
bias; the dashed lines indicate the LoA.

Repeatability was assessed using the ICC. ABA-o1
showed substantial repeatability across 5 independent
runs (ICC(3,1)=0.77; ICC(3,5)=0.94), and ABA-5 like-
wise showed substantial repeatability (ICC(3,1)=0.82;
ICC(3,5)=0.96). In contrast, interrater reliability among the
5 HBA physician raters was only fair on single meas-
ures (ICC(2,1)=0.38) and improved when averaging them
(ICC(2,5)=0.75). Overall, both AI-based approaches yielded
more stable ratings across repeated evaluations than HBA,
with ABA-5 slightly more stable than ABA-o1.
Scores by Training Level
Table 3 summarizes mean interview scores and SDs by
training level. Across methods, APs had the highest means

(HBA: 57.6, SD 1.7; ABA-o1: 56.8, SD 1.7; ABA-5: 58.5,
SD 13.2). MSs were next (HBA: 56.5, SD 12.0; ABA-o1:
55.0, SD 12.2; ABA-5: 55.3, SD 13.2), in some cases
approximating AP performance. RPs had the lowest means
(HBA: 49.2, SD 3.6; ABA-o1: 47.1, SD 0.5; ABA-5:
48.3, SD 3.8). Therefore, the anticipated ordinal pattern
(APs>RPs>MSs) was not consistently observed as MS means
exceeded RP means across all methods.

Table 3. Mean interview scores by training level as rated via human-based assessment (HBA) and artificial intelligence–based assessment (ABA).

Group

Participant
s per
group, n HBA score (0-125), mean (SD) ABA-o1a score (0-125), mean (SD)

ABA-5b score (0-125),
mean (SD)

Attending physicians 2 57.6 (1.7) 56.8 (1.7) 58.5 (13.2)
Medical students 2 56.5 (12.0) 55.0 (12.2) 55.3 (13.2)
Resident physicians 3 49.2 (3.6) 47.1 (0.5) 48.3 (3.8)

aABA-o1: ABA using GPT-o1 Pro.
bABA-5: ABA using GPT-5 Pro.

Processing Time (35 Cases)
Total processing time was 5 hours, 59 minutes, 35 seconds
for the physician benchmark; 1 hour, 56 minutes, 38 seconds
for ABA-5; and 2 hours, 31 minutes, 5 seconds for ABA-o1.
Average time per case was 3 minutes, 19.9 seconds for

ABA-5 (batch-to-batch SD 1 minute, 6 seconds); 4 minutes,
19 seconds for ABA-o1 (SD 3 minutes, 9 seconds); and 10
minutes, 16.4 seconds for the physicians (SD 11 minutes, 9
seconds). Relative to the physicians, total time was reduced
by 67.6% with ABA-5 and 58% with ABA-o1 (Table 4).

Table 4. Analysis time by method (5 independent runs and raters per method). “Batch-to-batch SD” indicates across-run variability. “Time reduction
vs physicians” indicates the percentage reduction relative to human-based assessment (HBA).
Method Total time Mean time per case (batch-to-batch SD) Time reduction vs physicians (%)
ABA-5a 1 h, 56 min, 38 s 3 min, 20 s (1 min, 6 s) 67.6
ABA-o1b 2 h, 31 min, 5 s 4 min, 19 s (3 min, 9 s) 58.0
HBA 5 h, 59 min, 35 s 10 min, 16 s (11 min, 9 s) —c

JMIR MEDICAL EDUCATION Takahashi et al

https://mededu.jmir.org/2026/1/e81673 JMIR Med Educ 2026 | vol. 12 | e81673 | p. 5
(page number not for citation purposes)

https://mededu.jmir.org/2026/1/e81673


aABA-5: artificial intelligence–based assessment (ABA) using GPT-5 Pro.
bABA-o1: ABA using GPT-o1 Pro.
cNot applicable.

Discussion
Principal Findings
In this validation study comparing 3 rater groups (HBA,
ABA-o1, and ABA-5), ABA-o1 and ABA-5 produced
interview ratings that were statistically indistinguishable
from those produced via HBA yet showed markedly
superior psychometric stability relative to HBA (Cronbach α:
ABA-o1=0.81, ABA-5=0.86, and HBA=0.80; ICC: ABA-
o1=0.77, ABA-5=0.82, and HBA=0.38). Cronbach α values
of ≥0.8 indicate good internal consistency [10], and ICC(2,1)
values of ≥0.75 denote good interrater reliability [11].
Agreement metrics were likewise robust as evaluative tools:
the CCC assesses both correlation and bias in a single index
[12], whereas Bland-Altman analysis remains the standard
for visualizing bias and LoA [13]. ABA-5 was benchmarked
against HBA using the same agreement framework.

Although the observed differences in reliability were
significant, they may also have practical implications
in educational settings. The consistently higher internal
consistency and interrater reliability suggest that ABA
scoring (including ABA-o1 and ABA-5) could enhance
assessment efficiency and reproducibility. Depending on the
context, ABA may serve not only as a scalable adjunct
but also as a viable alternative to human raters in transcript-
based clinical interview evaluations, although this requires
significant larger-scale validation.
Comparison With Prior Work
These findings corroborate previous work in which LLMs
matched or exceeded faculty performance when scoring
free-text notes [6], designing script concordance tests [7], and
evaluating OSCE encounters [8]. A recent study showed that
GPT-4o can produce inpatient documentation of comparable
quality to that produced by resident physicians while reducing
charting time by >50% [14]. In particular, studies of OSCE
history-taking and free-text documentation have begun to
demonstrate that LLM-based raters can apply communica-
tion-focused rubrics in virtual or simulated encounters with
performance comparable to that of trained faculty, underscor-
ing the relevance of AI-supported assessment in simulation-
based learning contexts [2,6,8]. Consistent with ChatGPT’s
passing performance on the US Medical Licensing Exami-
nation [15], this study suggests that foundation models
possess clinically relevant semantic competence even in
spoken communication tasks. Moreover, the 58% reduction
in analysis time mirrors the 2025 Time for Class survey,
where 36% of faculty who used generative AI daily reported a
measurable workload decrease [16].

Beyond efficiency, such time savings could play a decisive
role in addressing the growing problem of clinician edu-
cator burnout and faculty shortages, which are societal

challenges that threaten the sustainability of CBME [17,18].
These concerns mirror prior reports that CBME assessment
documentation requires several minutes per form and that
the cumulative “assessment burden” is perceived as a threat
to program sustainability [3,4]. By automating labor-inten-
sive scoring, AI can free physicians to devote more time to
high-value coaching and mentorship, thereby enhancing both
educator well-being and learner support [17]. Furthermore,
the superior scoring consistency observed with LLMs may
help curb rater drift and cognitive biases such as leniency,
halo, or contrast effects, which multicenter OSCE analyses
have identified as long-recognized sources of unreliability
and examiner-related variance in workplace-based assess-
ments [19]. Improved fairness and reliability in assessment
would advance equity in trainee progression and, ultimately,
foster a more competent, patient-centered workforce.
Interpretation and Educational
Implications
From an educational perspective, 3 observations are
noteworthy when framed across the 3 rater groups (HBA,
ABA-o1, and ABA-5).

Consistency vs Nuance
The score distributions for ABA-o1 and ABA-5 suggest that
these models apply the rubric more consistently than HBA
raters, likely because their underlying embeddings execute
the criteria more deterministically once sampling stochastic-
ity is averaged across runs. Consistency is a hallmark of
fair assessment; however, the absence of human nuance in
ABA-o1 and ABA-5 could miss contextual subtleties (eg,
cultural cues and atypical communication styles) that HBA
raters may detect. Such subtleties may include culturally
patterned ways of showing respect or disagreement, indi-
rect or high-context communication, and unconventional
but effective rapport-building strategies that are difficult
to fully capture in a text-based rubric. Accordingly, this
balance between reproducibility and subtlety is central when
integrating ABA into educational programs; in our view,
ABA is best used to enhance reproducibility and effi-
ciency, with human raters remaining essential for high-stakes
decisions and for cases in which subtle contextual factors are
educationally or ethically salient.

Efficiency Gains
Relative to HBA (10 minutes, 16 seconds per case), ABA-5
and ABA-o1 reduced analytic time to 3 minutes, 20 sec-
onds (–67.6%) and 4 minutes, 19 seconds (–58%) per
case, respectively, amounting to approximately 240 and 210
faculty minutes saved across 35 encounters, respectively. In
throughput terms, this corresponds to an increase in through-
put from approximately 6 cases per hour with HBA to 18
cases per hour with ABA-5 and 14 cases per hour with
ABA-o1, supporting more timely formative feedback and
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enabling the reinvestment of AI-derived efficiency gains into
coaching rather than grading. When viewed alongside the
lower CV and higher reliability indexes for AI-based scoring,
these efficiency gains suggest that ABA could support more
consistent and sustainable assessment practices within CBME
frameworks [3,4,19]. In addition, ABA-5 could process data
for 3 to 4 individuals in a single run, reducing the need
for repeated prompt inputs and minimizing data handling
overhead.

Level-Based Performance
MSs outperformed RPs on the same rubric in this cohort. This
pattern may reflect (1) sampling error in a modest cohort, (2)
case specificity favoring recently studied content, and/or (3)
a rubric that emphasizes foundational communication more
than advanced clinical reasoning. In particular, the MIRS
prioritizes patient-centered communication behaviors that are
heavily emphasized in undergraduate curricula and may be
less sensitive to more advanced diagnostic reasoning skills
typically developed during residency. Given the small number
of participants and the single standardized case focused
on a classic thyrotoxic periodic paralysis presentation, this
unexpected pattern should be interpreted as a context-bound,
hypothesis-generating finding rather than evidence that MSs
generally outperform RPs in broader clinical performance.
Replication with larger, more varied case sets and tiered
rubrics evaluated across HBA, ABA-o1, and ABA-5 is
warranted.

Practical Implications
Practically, programs could deploy an “AI-first, faculty-veri-
fied” workflow in which ABA-o1 and ABA-5 provide rapid
formative scores and narrative feedback immediately after
an encounter and HBA then audits a random subset for
quality assurance, similar to double reading in radiology.
Such hybridity leverages the speed and reliability of LLMs
while retaining human oversight for high-stakes decisions.
Strengths and Limitations
A key strength is the dual evaluation of accuracy (agreement)
and efficiency (time), providing a more complete picture of
implementation value than through accuracy alone. Nonethe-
less, several limitations warrant caution:

First, only 7 participants and a single thyrotoxic peri-
odic paralysis scenario were tested, limiting generalizability
across learner levels, languages, and clinical contexts. The
small and homogeneous sample also restricts the psycho-
metric interpretation of the findings; for example, differen-
ces in learner experience, case complexity, and language
environment may influence both human and AI scoring
behaviors. Therefore, these results should be viewed as

preliminary and hypothesis generating rather than confirma-
tory. Second, convenience sampling and self-selection may
have introduced bias toward technology-friendly participants.
Third, model and prompt dependence was a limitation; the
results correspond to GPT-o1 Pro and GPT-5 Pro with a
specific rubric prompt; other LLMs or prompt engineering
strategies could alter performance. Fourth, speech-to-text
errors were not exhaustively audited and may have influ-
enced ratings. In addition, the evaluation was limited to
transcribed textual data; nonverbal cues, vocal tone, and
conversational pauses present in the actual interviews could
not be assessed. Fifth, there was potentially a systemic
bias. High concordance does not preclude shared cognitive
blind spots between AI and human raters; fairness audits
across sex, accent, and cultural communication styles remain
necessary. In practical implementations, this would entail
periodic subgroup analyses of score distributions, qualitative
review of discrepant cases, and predefined procedures for
pausing or adjusting AI-based scoring if systematic disparities
are detected.
Future Research
Future studies should (1) evaluate multiple diverse clini-
cal scenarios, including psychosocially complex cases; (2)
compare real-time vs postencounter AI feedback; (3) examine
learner outcomes such as skill acquisition and satisfaction; (4)
conduct cost-effectiveness analyses at scale; and (5) develop
and evaluate bias mitigation and explainability techniques—
such as routine fairness dashboards, scheduled revalidation
against human ratings, and faculty-led oversight processes—
to satisfy accreditation requirements.

As this study was limited to transcript-based assessments
of simulated encounters, future work is also needed to
evaluate how well ABA scores correlate with actual clinical
performance and whether AI can reduce assessor burden
while maintaining fairness and reliability.
Conclusions
Within the constraints of this pilot, GPT-o1 Pro and GPT-5
Pro matched expert physicians in scoring simulated patient
interviews; produced more reliable ratings; and delivered
a substantial 58% and 67.6% reduction in analytical time,
respectively. These preliminary results indicate that LLMs
could serve as a complementary or alternative tool to
human raters for transcript-based interview assessments.
This approach warrants further investigation as a means to
contribute to assessment efficiency in medical education.
Careful curricular design and continuous human oversight
will be essential to ensure that such tools enhance rather than
compromise the validity and equity of learner evaluations.
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