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Abstract
Background: Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs), have started
a new era of innovation across various fields, with medicine at the forefront of this technological revolution. Many studies
indicated that at the current level of development, LLMs can pass different board exams. However, the ability to answer
specific subject-related questions requires validation.
Objective: The objective of this study was to conduct a comprehensive analysis comparing the performance of advanced
LLM chatbots—Claude (Anthropic), GPT-4 (OpenAI), Gemini (Google), and Copilot (Microsoft)—against the academic
results of medical students in the medical biochemistry course.
Methods: We used 200 USMLE (United States Medical Licensing Examination)–style multiple-choice questions (MCQs)
selected from the course exam database. They encompassed various complexity levels and were distributed across 23
distinctive topics. The questions with tables and images were not included in the study. The results of 5 successive attempts
by Claude 3.5 Sonnet, GPT-4‐1106, Gemini 1.5 Flash, and Copilot to answer this questionnaire set were evaluated based
on accuracy in August 2024. Statistica 13.5.0.17 (TIBCO Software Inc) was used to analyze the data’s basic statistics.
Considering the binary nature of the data, the chi-square test was used to compare results among the different chatbots, with a
statistical significance level of P<.05.
Results: On average, the selected chatbots correctly answered 81.1% (SD 12.8%) of the questions, surpassing the students’
performance by 8.3% (P=.02). In this study, Claude showed the best performance in biochemistry MCQs, correctly answering
92.5% (185/200) of questions, followed by GPT-4 (170/200, 85%), Gemini (157/200, 78.5%), and Copilot (128/200, 64%).
The chatbots demonstrated the best results in the following 4 topics: eicosanoids (mean 100%, SD 0%), bioenergetics and
electron transport chain (mean 96.4%, SD 7.2%), hexose monophosphate pathway (mean 91.7%, SD 16.7%), and ketone
bodies (mean 93.8%, SD 12.5%). The Pearson chi-square test indicated a statistically significant association between the
answers of all 4 chatbots (P<.001 to P<.04).
Conclusions: Our study suggests that different AI models may have unique strengths in specific medical fields, which could
be leveraged for targeted support in biochemistry courses. This performance highlights the potential of AI in medical education
and assessment.
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Introduction
Recent breakthroughs in artificial intelligence (AI), especially
in large language models (LLMs), have started a new era of
innovation across diverse fields, with medicine leading the
charge in this technological revolution. The integration of AI
into various medical disciplines such as oncology, radiology,
and pathology has demonstrated its advancing clinical uses
and its potential to revolutionize health care delivery [1-3].
As new LLMs continue to emerge and evolve, AI is poised
to fundamentally reshape our understanding and approach to
medicine, offering unprecedented opportunities for improved
patient care, diagnostics, and medical education [4].

While academic interest in AI has surged in recent years,
integrating AI technologies in educational settings, particu-
larly medicine, has been uneven and fraught with challenges.
Among many AI tools available, ChatGPT has emerged as
a potential game-changer in medical education [5,6]. This
sophisticated language model, powered by advanced neural
networks, demonstrates a remarkable ability to interpret
prompts and generate human-like responses, making it
difficult to distinguish from human-produced language.

LLM’s underlying transformer architecture enables it
to excel in natural language understanding, continuously
processing and adapting to new information. This adapta-
bility, combined with its vast knowledge base, presents
promising opportunities for enhancing teaching and learn-
ing methodologies in medical education [7]. AI-powered
tools such as ChatGPT may be particularly effective in
addressing persistent challenges in student engagement,
offering interactive and personalized learning experiences that
traditional teaching methods often struggle to provide [8].

OpenAI’s GPT-4 and GPT-3.5, Google’s Gemini, and
Anthropic’s Claude have emerged as frontrunners, offering
unique capabilities and potential medical education and
practice applications. As of 2024, the AI landscape in health
care has become increasingly diverse, with over 20 LLMs
available for public use. Among them, 4 are the most
promising.

Anthropic developed Claude, an AI assistant known for
its strong natural language understanding and generation
capabilities. It has been trained on a wide range of data
and is designed to be helpful, harmless, and honest. Claude
has shown particular strength in tasks requiring nuanced
understanding and ethical reasoning [9].

Created by OpenAI, GPT-4 is the latest GPT series
iteration. It represents a significant advancement over its
predecessor, GPT-3, with improved language understanding,
generation, and reasoning capabilities. GPT-4 has demon-
strated impressive performance across various domains,
including coding, creative writing, and analytical tasks [10].

Developed by Google AI, Gemini is a multimodal AI
model capable of understanding and generating text, images,
and other forms of data. It comes in different sizes and is
optimized for various tasks and computational requirements.
Gemini has shown strong performance in complex reasoning

tasks and can understand context across different modalities
[11].

Created by GitHub in collaboration with OpenAI, Copilot
is an AI pair programmer designed to assist developers by
suggesting code completions and entire functions. It is now an
integral part of Microsoft Windows. While primarily focused
on coding tasks, Copilot’s underlying language model has
shown capabilities in understanding and generating natural
language [12].

One primary method for assessing the capabilities of
LLMs in knowledge-based fields, including medicine, is their
performance on multiple-choice tests [13-16]. The release of
GPT-4 by OpenAI in 2023 marked a significant milestone,
demonstrating impressive test-taking abilities across various
domains [17]. Similarly, Claude 2 from Anthropic, released in
June 2023, has gained attention for its ability to process larger
input spaces (up to 100,000 tokens), potentially allowing for
a more comprehensive analysis of medical texts and case
studies [8].

The high accuracy demonstrated by ChatGPT-4 in
answering multiple-choice questions (MCQs) compared to
medical students’ performance is particularly noteworthy. It
suggests that AI could be an effective study aid, helping
students review and reinforce their knowledge across various
medical subjects. However, it is essential to view AI as a
complementary tool rather than a replacement for MCQs that
have transformed from their conventional use as assessment
tools to become a versatile educational approach in medical
curricula. MCQs stimulate students’ cognitive abilities and
promote active interaction with study materials. By using
advanced generative AI-driven language models to address
MCQs in medical physiology and other subjects, educators
may provide students with an innovative and engaging
learning experience, potentially enhancing their grasp of
essential medical concepts, traditional teaching methods, or
human expertise [18,19].

Recent studies have begun to compare the performance
of different AI models in medical education contexts. For
instance, Claude, an LLM developed by Anthropic, has
shown promising results in solving medical MCQs. Some
studies have indicated that Claude demonstrated a high
frequency of right answers and explanations compared to
ChatGPT-3.5 [8,20]. These comparative studies are crucial
in understanding the strengths and limitations of different
AI models in medical education. They help educators and
researchers identify the most suitable tools for specific
learning objectives and contexts within medical curricula.

Despite the promising results, it is important to note the
variability in AI performance across different studies and
question types. For example, while some studies reported
high accuracy rates for ChatGPT in physiology tests [5,8],
others found lower performance rates, particularly as the
complexity and difficulty of questions increased [21,22]. This
variability underscores the need for careful consideration
when integrating AI tools into medical education. Educators
must be aware of these tools’ strengths and limitations and
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ensure they are used appropriately to complement, rather than
replace, traditional teaching methods.

It is important for educational strategies to prioritize the
integration of LLMs into the curriculum as a vital aspect of
the learning process. This integration should enable students
to cultivate critical thinking and analytical skills, particu-
larly in understanding the constraints of AI. LLMs have the
potential to offer students in-depth knowledge and diverse
viewpoints, facilitating a more thorough comprehension of
intricate medical concepts [23]. By using the output of
LLMs and working alongside educators to draw upon their
existing knowledge, students can actively participate in the
learning process. This collaborative approach allows for the
refinement of their understanding and insights. The future
of medical education depends on the seamless integration of
human expertise with AI-powered tools [3,19,23].

The aim of this study was to conduct a comprehen-
sive analysis comparing the performance of advanced LLM
chatbots—GPT-4, Claude, Copilot, and Gemini—against the
academic results of medical students in biochemistry. The
research objectives were to evaluate the following hypothe-
ses:

• The AI chatbots will perform similarly to medical
students on factual recall and basic concept application
questions in biochemistry but may show differences in
performance on complex problem-solving scenarios.

• There will be significant variation in performance
among the different AI models, with newer mod-
els (GPT-4 and Claude) potentially showing higher
accuracy compared to earlier versions.

• The AI-driven LLMs’ performance will vary across
different biochemistry topics, with potentially stronger
performance in areas requiring systematic pathway
analysis and weaker performance in topics requiring
integration of clinical context.

Methods
Study Design
This study focused on a comparative analysis of the capabili-
ties of different AI-driven LLMs in the medical biochemistry
course. The research included an examination of 4 chatbots
currently available to the public: Claude (Anthropic), GPT-4
(OpenAI), Gemini (Google), and Copilot (Microsoft).

A total of 200 scenario-based MCQs with 4 options
and a single correct answer were randomly chosen from
the medical biochemistry course’s examination database for
medical students and validated by 2 independent experts. The
study did not include questions with images and tables. The
selected questions encompassed various levels of complex-
ity. They were distributed across 23 distinctive categories:
structural proteins and associated diseases, globular pro-
teins and hemoglobin, red blood cells (RBCs) and anemia,
structure and function of amino acids, structure and func-
tion of proteins, bioenergetics and electron transport chain,
enzymes, glycolysis and gluconeogenesis, glycogen, signaling
mechanisms, pyruvate dehydrogenase and Krebs cycle,

cholesterol metabolism, eicosanoids, fatty acid metabolism,
fructose and galactose metabolism, hexose monophosphate
pathway, ketone bodies, lipoproteins, lysosomal storage
diseases, amino acid metabolism, fast and fed state, heme
metabolism, and nitrogen metabolism.

Data Collection
For the testing phase, each selected chatbot was required
to answer a set of 200 questions, and their performance
was evaluated against the responses provided by medical
students for the same set of questions. Claude 3.5 Sonnet,
GPT-4‐1106, Gemini 1.5 Flash, and Copilot proficiency in
responding to MCQs was assessed in the last 2 weeks of
August 2024. An OpenAI paid subscription was obtained to
get GPT-4 access.

Each chatbot was given the prompt “generate the list
of correct answers for the following MCQs” and provided
with a first set of 50 questions; following with the same
prompt and 3 more sets of 50 MCQs each, totally there were
200 MCQs in the questionnaire. After that, this procedure
was repeated 5 times (no time period between the attempts
was assigned). The results of 5 successive attempts by each
chatbot to answer this questionnaire set were meticulously
recorded in a Microsoft Excel spreadsheet and evaluated
based on accuracy. A total of 4000 answers from LLMs were
analyzed.

Five random answers were generated and analyzed for
the same MCQ set using the RAND() function in Excel
(Microsoft 365) to compare chatbot results with random
guessing.
Data Analysis
The answers provided by each LLM were recorded and input
into the Excel spreadsheet (Microsoft 365). The data from
each (1-5) attempt was matched with the answer key and
compared with all previous attempts, finding the percentage
of repeated and correct answers among them. After that,
a detailed item analysis was performed for each chatbot
concerning different question categories.

Statistica 13.5.0.17 (TIBCO Software) was used to analyze
the data’s basic statistics. Considering the data’s binary
nature, the chi-square test was used to compare results among
the different chatbots.

Results
Overview
According to our data, on average, 4 selected chatbots
accurately answered 81.1% (SD 12%) of 200 MCQs from the
medical biochemistry course. This result was 8.3% (P=.02)
above the students’ average (mean 72.8%, SD 12.7%) and
almost 4 times better than randomly generated responses
(mean 22%, SD 2.9%) for the same questions.

There was a significant variation in correct responses
among the chatbots. The best result was recorded for Claude
(92.5%, SD 0%), followed by GPT-4 (mean 85.1%, SD 1%)
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and Gemini (mean 78.5%, SD 0%), which were better than
the students’ average. Copilot showed the lowest result (mean
64%, SD 0%; Figure 1).

Interestingly, all chatbots answered 104 (52%) of the 200
questions correctly in all attempts. General item analysis
revealed that eicosanoids, bioenergetics and electron transport
chain, hexose monophosphate pathway, and ketone bodies
were the 4 best topics, with the mean (SD) results for all
chatbots being 100% (0%), 96.4% (7.2%), 91.7% (16.7%),
and 93.8% (12.5%), respectively.

In contrast, the lowest results were recorded for globular
proteins and hemoglobin (mean 58.4%, SD 26.4%), lipopro-
teins (mean 64.6%, SD 20.3%), and fructose and galactose
metabolism questions (mean 65.8%, SD 29.9%).

After that, each chatbot’s results for all 23 topics were
evaluated (Figure 2).

Figure 1. Percentile of correct answers from different chatbots and students on 200 multiple-choice questions from the medical biochemistry course.

Figure 2. Evaluation of chatbot performance in different topics of the medical biochemistry course. RBC: red blood cell.
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Claude
Claude, offered by Anthropic, provided 92.5% (185/200)
correct answers to the set of biochemistry MCQs. The
answers in this second and all subsequent attempts were
identical to the first. As the chatbot claims, its knowledge
base has not changed between attempts, and it applies the
same reasoning to answer each question. It was the best
result among the 5 chatbots, 19.7% better than the stu-
dent average and 70.5% superior to random guessing. The
item analysis suggested that Claude correctly answered all
questions (100%) from the following 12 categories: structure
and function of proteins, bioenergetics and electron transport
chain, enzymes, signaling mechanisms, pyruvate dehydrogen-
ase and Krebs cycle, cholesterol metabolism, eicosanoids,
fructose and galactose metabolism, hexose monophosphate
pathway, ketone bodies, heme metabolism, and nitrogen
metabolism. The lowest result (81.8%) was recorded for
the lipoproteins. For the rest of the topics, the percentile of
correct answers was 83.3%‐91.7%.

Claude did not solve 15 (7.5%) out of 200 MCQs from the
entire questionnaire set. These were comprehensive questions
about RBCs, hemoglobin, enzymes, biotin deficiency, and
lipoproteins.
GPT-4
The results of 5 successive ChatGPT-4 (OpenAI) attempts
to answer the set of 200 biochemistry MCQs showed 85.1%
(SD 1%) correct answers on average. The best result of its
5 attempts was 86.5%, 13.7% better than the average for
medical students and 64.5% above random guessing. The
fourth attempt was the most successful; the mean results
of the other 4 attempts were close to 85% (range 84%‐
85.5%). The coincidence generated by GPT-4 answers with
the previous attempts was 91.5%‐94.5%, and the coincidence
of correct answers among them was in the range 81%‐83.6%.

Of the 200 questions, 158 (79%) were answered correctly
across all 5 attempts and considered a solid knowledge area
for GPT-4. Most of these MCQs were recall questions,
but some were complex and required critical thinking. The
item analysis indicated that the best 6 categories with 100%
correct answers were bioenergetics and electron transport
chain, glycogen, signaling mechanisms, eicosanoids, hexose
monophosphate pathway, and ketone bodies. The lowest
result was recorded for globular proteins and hemoglobin
questions—only 41.7% of the correct answers. For the rest
of the topics, the percentile of correct answers was 77.1%‐
97.8%.

GPT-4 did not answer 17 (8.5%) of the 200 MCQs from
the entire questionnaire set in any 1 out of all 5 attempts.
These were more comprehensive questions about defective
proteins, oxygen saturation, anemia, amino acids, glycogen,
glycolysis and gluconeogenesis, and lipoproteins.

Gemini
Google recently introduced Gemini as a successor to Bard.
The results of 5 attempts by Gemini to answer the set
of 200 biochemistry MCQs showed 157 (78.5%) correct
answers, 5.7% above the average for medical students and
56.5% above the random answers. Unlike Bard, 5 successive
attempts from Gemini were similar; the same answers were
received.

The item analysis of these 157 correct answers shows
that Gemini did the best (100% accurate) for questions in
the following 5 categories: RBCs and anemia, bioenergetics
and electron transport chain, eicosanoids, hexose monophos-
phate pathway, and ketone bodies. Most of these MCQs were
recall questions. The lowest 50% results were recorded for
the following 3 categories: enzymes, pyruvate dehydrogen-
ase and Krebs cycle, and fructose and galactose metabolism.
Gemini’s responses in other topics were in the 63.6%‐91.7%
interval. Gemini did not answer 43 (21.5%) of the 200 MCQs
from the entire questionnaire set, which were comprehensive
questions mostly about proteins, enzymes, the Krebs cycle,
fatty acids, fructose, and galactose metabolism.
Copilot
Microsoft’s Copilot can accept only up to 2000 characters in
the prompt, so only 2 to 7 MCQs can be answered at a time,
which is inconvenient to work with. The results received on
the first try were not different from 4 successive attempts,
so there was zero variation among all 5 attempts. Copilot
generated 128 (64%) accurate answers for the same set of
200 MCQs from the biochemistry course, 8.8% lower than
the average medical student but 42% better than random
guessing.

The item analysis of these 126 correct answers indicated
that these MCQs were mostly recall questions. The best
result was shown for the eicosanoids category (100%), and
the lowest was for fatty acid metabolism (only 30% of
correct answers). Copilot’s responses in other topics vary
from 33.3% to 88.9%. Copilot did not answer 72 (36%) of
the 200 MCQs from the questionnaire set. These questions
concerned proteins, hemoglobin, amino acids, enzymes, fatty
acids, pyruvate dehydrogenase, Krebs cycle, and fast and fed
state.
Pearson Chi-Square Test Results
Table 1 shows the results of the Pearson chi-square test,
which we used due to the binary nature of the data to compare
the performance of the different AI-driven chatbots against
each other.

The null hypothesis was rejected because the P value for
all chatbots was less than α (P=.05), so there is a statistically
significant association between the answers of all 4 chatbots.
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Table 1. Pearson chi-square test results to compare the performance of Claude, GPT-4, Gemini, and Copilot against each other.
Large language models Chi-square (df) P value
Claude × GPT-4 19.7 (1) <.001
Claude × Gemini 6.1 (1) .01
Claude × Copilot 4.1 (1) .04
GPT-4 × Gemini 33.1 (1) <.001
GPT-4 × Copilot 15.9 (1) <.001
Gemini × Copilot 23.5 (1) <.001

Discussion
Principal Findings
Medical education is rapidly evolving, with AI playing an
increasingly significant role. In this context, evaluating AI
efficacy and relevancy to results is crucial, particularly given
the precision and depth of understanding required in medical
practice. AI-driven LLMs such as ChatGPT, Claude, Copilot,
and Gemini have been compared against medical students in
various studies, revealing both the strengths and limitations
of AI in medical education. These comparisons show how
AI can enhance human learning while also highlighting areas
where it may not measure up. Research into AI’s role in
medical training has uncovered intriguing possibilities and
important constraints [1,5,7].

MCQs form a cornerstone of assessment in medical
education. Analyzing these questions is vital as it allows
educators to assess their effectiveness in testing higher-
order thinking and clinical reasoning skills, ensuring that
assessments accurately reflect the competencies required
for medical practice [18]. While LLMs have demonstrated
impressive capabilities in answering queries and simulating
scenarios, the depth and breadth of their understanding,
particularly concerning MCQs in medical exams, still requires
thorough evaluation [19].

The comparative analysis of LLMs and medical students
in biochemistry assessment reveals several intriguing patterns
that both confirm and challenge our initial hypotheses. While
we anticipated comparable performance between AI models
and medical students, the results demonstrated that LLMs not
only matched but significantly exceeded student perform-
ance, with an 8.3% higher average score (P=.02) across
200 medical biochemistry questions. This finding particularly
supports our hypothesis regarding factual recall and concept
application, though with a more pronounced advantage for
AI systems than initially predicted. The observed variation in
performance among different LLM platforms—ranging from
Claude’s exceptional 92.5% (185/200) accuracy to Copilot’s
more modest 64% (128/200)—aligns with our hypothesis
about performance differences between AI models, suggest-
ing that architectural and training differences significantly
impact their capabilities in specialized medical knowledge
domains.

Comparison to Literature
Recent studies have shown that LLMs, specifically GPT-4,
often outperform medical students on MCQ items in board
and licensing exams. This finding underscores the signifi-
cance of MCQs in medical licensing exams, extensively
used in crucial assessments worldwide. Examples include
the Peruvian National Licensing Medical Examination, the
United States Medical Licensing Examination (USMLE), the
United Kingdom Medical Licensing Assessment (UKMLA),
and the Australian Medical Council (AMC) Exam [20,24-26].
The widespread use of MCQs is attributed to their effec-
tiveness in evaluating higher-order skills through complex
clinical scenarios, analysis, and problem-solving. These
questions assess students’ ability to integrate information,
reflecting real-world challenges and shaping competent
professionals. It is well correlated with the results of our
study, which have shown that the selected 4 chatbots
answered correctly to 81.1% (SD 12%) of the 200 questions
from the medical biochemistry course, which is 8.3% above
the students’ average.

Another comprehensive study compared the results of 4
LLMs across 163 questions from sample NBME (National
Board of Medical Examiners) clinical subject exams. The
results were striking: GPT-4 achieved a perfect score
of 100% (163/163), significantly outperforming GPT-3.5,
Claude, and Bard. GPT-3.5 scored 82.2% (134/163), Claude
84.7% (138/163), and Bard 75.5% (123/163). The statis-
tical superiority of GPT-4 was evident, with no signif-
icant differences observed among the other 3 models
[27]. Interestingly, while GPT-4 excelled across all subject
exams, the different models demonstrated variable strengths.
GPT-3.5 performed best in family medicine and obstetrics
and gynecology, Claude in surgery, and Bard in surgery and
neurology. The surgery exam yielded the highest average
score across all models, while family medicine had the
lowest. GPT-4’s exceptional performance may be attributed
to its extensive training data, which exceeded 45 terabytes by
September 2021, despite not being specifically fine-tuned for
medical data [10].

Our data contradict this clinical study and suggest that
GPT-4 did well with 85% (170/200) of correct answers but
is not currently the most proficient chatbot for biochemistry
questions. The best result was recorded for Claude, with an
impressive 92.5% (185/200) of the correct answers. Gemini
took third place with 78.5% (157/200) of correct answers,
which is still above the student’s average of 72.8% (SD 5.2%)
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for the same questions. The lowest result was recorded for
Copilot (128/200, 64%).

These findings highlight the potential of LLMs in medical
education and practice. Their ability to tackle complex
medical questions opens doors to innovative clinical decision
support, research, and education applications. However, it is
worth noting that GPT-4, the only LLM in this study not
available for free, could be less accessible to a broad range of
students, potentially limiting its widespread use in educational
settings.

Several studies have evaluated ChatGPT’s performance in
biochemistry. One study examined GPT-3.5’s potential as a
self-study adjunct for medical students in biochemistry, using
200 questions. ChatGPT provided correct answers to 58%
(116/200) of the biochemistry questions. While this perform-
ance allowed it to pass the university’s medical biochemistry
exam, the study suggests there is room for improvement in
GPT-3.5 as a comprehensive and reliable self-learning tool
[28].

Another study focused on ChatGPT’s ability to address
higher-order questions in medical biochemistry. Using
GPT-3.5, researchers conducted a web-based cross-sectional
study presenting 200 randomly selected, complex reason-
ing questions from an institutional question bank, classified
according to CBME (Competency-Based Medical Education)
curriculum modules. Two expert biochemistry academicians
evaluated responses on a 0‐5 scale. The AI achieved a
median score of 4 (IQR 3.5-4.5), which was comparable
to a hypothetical value of 4 (P=.16) but significantly lower
than the maximum of 5 (P=.001). These results suggest that
GPT-3.5 shows promise as an effective tool for addressing
complex questions in medical biochemistry, demonstrating its
potential in handling higher-order thinking tasks in this field
[29].

Our research confirms that GPT-4 has significant
improvements and is superior to GPT-3.5. Our data suggest
that GPT-4 responded correctly to 84%‐86.5% of MCQs, and
79% answered correctly across all 5 attempts.
Implications of Findings
The implications of AI’s performance in medical education
extend beyond mere test-taking abilities. LLMs can answer
complex medical questions that raise important questions
about the future of medical education and topics in which
LLMs demonstrate proficiency, so they may be used to
assist students. The detailed analysis of MCQs in our study
revealed that questions from 4 topics are well answered by
all chatbots: eicosanoids, bioenergetics, electron transport
chain, and ketone bodies. In contrast, the lowest results were
recorded for globular proteins and hemoglobin, lipoproteins,
and fructose and galactose metabolism questions. However,
there was a significant difference in the 4 LLMs perform-
ances. Claude showed the most impressive results and
answered all questions (100%) from 12 categories: structure
and function of proteins, bioenergetics and electron transport
chain, enzymes, signaling mechanisms, pyruvate dehydrogen-
ase and Krebs cycle, cholesterol metabolism, eicosanoids,

fructose and galactose metabolism, hexose monophosphate
pathway, ketone bodies, heme, and nitrogen metabolism.

In conclusion, the rapid advancements in AI technology,
particularly in medical education, present opportunities and
challenges. While LLMs have shown impressive capabili-
ties in answering medical exam questions, it is crucial to
remember that medical education encompasses more than
just knowledge acquisition. Clinical skills, empathy, ethical
decision-making, and the ability to navigate complex health
care systems are all integral parts of medical training that
current AI models may not fully capture.

As we progress, we must continuously evaluate AI’s
role in medical education, ensuring that it complements
rather than replaces human expertise. Our findings also have
important implications for assessment strategies in medical
education. The ability of LLMs to surf the net and do better
than medical students on MCQ-based evaluation is an assault
on the traditional ways of measuring medical performance
and calls for a better understanding of how medical knowl-
edge and skills should be assessed. While such results provide
ideas on how to develop a curriculum and manage educa-
tional resources, they also highlight the need to ensure that
the value of AI in measuring certain aspects of medical
training, such as clinical reasoning, interaction with patients,
and even decision-making ethics, is always respected. This
underscores the need for medical education to continue
emphasizing the development of comprehensive clinical skills
beyond what can be measured through standardized testing.
Future Directions
Future research in this field should pursue several key
routes to better understand and implement AI technologies in
medical education. Long-term studies are needed to eval-
uate the impact of LLM integration on student learning
outcomes, particularly focusing on how AI-assisted learning
affects knowledge retention, clinical reasoning development,
and overall academic performance. These studies should
incorporate diverse assessment methods beyond MCQs,
including case-based scenarios, open-ended questions, and
practical clinical applications of biochemistry knowledge
across different medical disciplines to understand whether the
observed performance patterns are consistent.
Strengths and Limitations
This study represents one of the first comprehensive
comparisons between multiple leading LLMs and medi-
cal students in the specific context of medical biochem-
istry education. The large sample size of 200 questions
provided a robust dataset for analysis, covering a broad
spectrum of biochemistry topics typically encountered in
medical education. The inclusion of multiple LLM platforms
(GPT-4, Claude, Copilot, and Gemini) allowed for a nuanced
comparison of AI capabilities across different models,
providing valuable insights into their relative strengths and
potential applications in medical education.

Several limitations should be considered when interpret-
ing these results. This study’s findings on different chatbot

JMIR MEDICAL EDUCATION Bolgova et al

https://mededu.jmir.org/2025/1/e67244 JMIR Med Educ 2025 | vol. 11 | e67244 | p. 7
(page number not for citation purposes)

https://mededu.jmir.org/2025/1/e67244


proficiencies are limited to MCQs from the biochemistry
course, which may not represent other medical questions
or contexts. In addition, the sample size of 200 questions,
excluding questions with images or tables, may not capture
the full range of difficulty levels or content areas.

LLMs receive regular updates, which result from training
on inputs and tuning so that they may provide different
answers depending on the testing date. Another limitation is
that GPT-4, which performed well, is not freely available,
potentially limiting its applicability in widespread educational
settings.
Conclusions
LLMs such as ChatGPT, Claude, Copilot, and Gemini
have impressive capabilities in answering MCQs, often
outperforming medical students. In this study, the selected
chatbots outperformed students’ results. These findings

highlight the potential of AI in medical education and
assessment. Different LLMs exhibit varying strengths in
different topics of medical biochemistry courses. In this
study, Claude showed the best performance, followed by
GPT-4, Gemini, and Copilot. This variability suggests that
different AI models may have unique strengths in spe-
cific medical fields, which could be leveraged for targe-
ted educational support. The strong performance of LLMs
in answering complex medical questions raises important
considerations for the future of medical education. While AI
demonstrates proficiency in knowledge-based assessments,
it is crucial to remember that medical training encom-
passes more than just information recall. Clinical reasoning,
empathy, ethical decision-making, and navigating health care
systems remain essential components that current AI models
may need to capture fully.
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