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Abstract
Background: Artificial intelligence advancements have enabled large language models to significantly impact radiology
education and diagnostic accuracy.
Objective: This study evaluates the performance of mainstream large language models, including GPT-4, Claude, Bard,
Tongyi Qianwen, and Gemini Pro, in radiology board exams.
Methods: A comparative analysis of 150 multiple-choice questions from radiology board exams without images was
conducted. Models were assessed on their accuracy for text-based questions and were categorized by cognitive levels and
medical specialties using χ2 tests and ANOVA.
Results: GPT-4 achieved the highest accuracy (83.3%, 125/150), significantly outperforming all other models. Specifically,
Claude achieved an accuracy of 62% (93/150; P<.001), Bard 54.7% (82/150; P<.001), Tongyi Qianwen 70.7% (106/150;
P=.009), and Gemini Pro 55.3% (83/150; P<.001). The odds ratios compared to GPT-4 were 0.33 (95% CI 0.18‐0.60)
for Claude, 0.24 (95% CI 0.13‐0.44) for Bard, and 0.25 (95% CI 0.14‐0.45) for Gemini Pro. Tongyi Qianwen performed
relatively well with an accuracy of 70.7% (106/150; P=0.02) and had an odds ratio of 0.48 (95% CI 0.27‐0.87) compared to
GPT-4. Performance varied across question types and specialties, with GPT-4 excelling in both lower-order and higher-order
questions, while Claude and Bard struggled with complex diagnostic questions.
Conclusions: GPT-4 and Tongyi Qianwen show promise in medical education and training. The study emphasizes the need
for domain-specific training datasets to enhance large language models’ effectiveness in specialized fields like radiology.
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Introduction
Artificial intelligence (AI) in radiology has significantly
improved diagnostic accuracy and educational methods
for radiologists. By using advanced machine learning and
deep learning techniques, AI applications have evolved
from enhancing image interpretation to supporting com-
plex diagnostic decisions [1]. These advancements not

only increase the efficiency of diagnostic processes but
also provide radiologists with interactive training simula-
tions, crucial for their professional growth and certification
readiness [2-9].

Recent advancements have also emerged with the
development of large language models (LLMs) like GPT-4,
Claude, Bard, Tongyi Qianwen and Gemini Pro. These
models have added a new aspect to medical education
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by producing medically accurate content and supporting
advanced diagnostic reasoning exercises [10,11]. These
features are crucial for establishing safe learning spaces
where future radiologists can practice detailed diagnostic
reasoning and decision-making without real-world clinical
risks [12,13]. Moreover, these LLMs are crucial in devel-
oping and clarifying complex medical scenarios and test
questions, improving the educational experience and boosting
the diagnostic abilities of students [14-16].

Despite these advancements, recent research has pinpoin-
ted limitations in the use of LLMs in medical exams,
particularly in specialties like radiology that demand
extensive clinical insight. Studies have shown that while
LLMs such as GPT-4 can manage simple diagnostic questions
effectively, they encounter difficulties with more complex
cases that require a deeper clinical understanding and the
integration of diverse medical information [17,18]. These
findings highlight a significant gap in the existing literature;
there is a lack of comprehensive comparative studies that
evaluate the performance of various LLMs across different
diagnostic scenarios in radiology [19].

This study addresses this gap by comparing several
mainstream LLMs in text-based radiology board exams,
without imaging components, evaluating their overall
performance. While a secondary objective is to analyze
performance by question type and topic. This study hypothe-
sizes that GPT-4 will outperform other models, particularly in
handling complex diagnostic questions.

Methods
Study Design
This research was structured as a prospective, comparative
analysis that aimed to test the effectiveness of various
notable LLMs within a controlled environment resembling
radiology board examinations without images. The radiology
exams comprehensively evaluated a candidate’s radiology
knowledge, reasoning, and clinical skills. China does not
currently have a unified national licensing exam specifically
for radiologists. Given that the Canadian Royal College and
American Board of Radiology exams are viewed as author-
itative and widely recognized, test questions were selected
according to the standards of these two exams for model
testing [20]. Both of the exams assess candidates on a broad
spectrum of radiology topics using multiple-choice questions.
Ethical Considerations
Despite the reliance on nonpersonal, pre-existing data and
the lack of direct involvement of human or animal sub-
jects, ethical approval and the need for informed consent
were waived by the Institutional Review Board of Peking
University First Hospital, Beijing, China. The radiologists
who participated in question validation and categorization
were compensated at a rate of 300 Chinese Yuan (US
$40.91) per hour for their professional expertise. All data
used in the study were anonymized exam questions, with
no personal identifiable information involved. The research

strictly adhered to ethical standards, with data integrity
meticulously upheld throughout the study.
Models Selection
The models chosen for this investigation included GPT-4
(OpenAI), Claude 2.1 (Anthropic), Bard (Google, PaLM
2), Tongyi Qianwen (Alibaba, Qwen-72B), and Gemini Pro
1.0 (Google). All models were tested from late November
to early December 2023. These models represent signifi-
cant advancements in AI, particularly in natural language
processing. They were selected based on their demonstrated
success in academic and professional settings, indicating their
potential effectiveness in educational applications.
Dataset Composition
The dataset for this study consisted of 150 multiple-choice
questions drawn from historical radiology board exams
similar to those given by the Canadian Royal College and the
American Board of Radiology. These questions were sourced
from the websites of Board Vitals [21] and CanadaQBank
[22], which are widely recognized for providing questions
that closely reflect the content and format of North Ameri-
can radiology board exams. Each question was individually
reviewed and validated by two academic radiologists—one
specializing in ultrasound with 20 years of experience and
the other in abdominal radiology with 4 years of experience.
Questions were only included if both reviewers concurred on
their relevance and appropriateness for this study. Questions
that involved images were excluded.
Question Categorization
All questions were classified according to their primary
assessment objectives using Bloom’s Taxonomy, including
two main categories: lower-order thinking (remembering
and understanding) and higher-order thinking (applying,
analyzing, and evaluating) [23]. Higher-order thinking
questions were further divided into specific groups such as
description and analysis of image findings, application of
concepts, clinical management, and calculation and classifica-
tion. Additionally, questions were also classified based on the
specific area of disease focus, including digestive, genitouri-
nary, musculoskeletal, respiratory, cardiovascular (including
angiography and intervention), nervous, breast and thyroid,
pediatrics, and imaging basics and physics. Each question was
reviewed and categorized independently by the two board-
certified radiologists mentioned above. Any disagreements
were then discussed collectively to arrive at a consensus.
Scoring Criteria
The Canadian Royal College examination uses a pass-fail
system based on achieving at least 70% on all written
components of the examination. The American Board of
Radiology uses a criterion-referenced scoring system. This
means that candidates are evaluated against a predefined
standard, not in comparison to other test-takers. The passing
standard is typically set by a group of experts, including
residency program directors and experienced clinicians, who
determine the difficulty level of each question to ensure it
aligns with the required competency for independent practice.
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To pass, candidates must meet or exceed the passing standard
for all categories scored together. For both exams, the
questions undergo psychometric validation, and questions that
are not effective in discriminating between candidates or are
found too difficult may be removed. The threshold for passing
in this study was set at 70% to align with the standards of the
Royal College examinations in Canada. This study did not use
the criterion-referenced scoring system used by the American
Board of Radiology because its standards were difficult to
ascertain. Each multiple-choice question was inputted into
different LLMs, and the first response from each model was
recorded as the subject of analysis.
Statistical Analysis
To evaluate the association between model type and accuracy
for categorical variables, χ2 tests were used. For categories
with small sample sizes, the Fisher exact test was used to
ensure the validity of the statistical results. Odds ratios and
their corresponding 95% CIs were calculated using GPT-4
as the benchmark. ANOVA was used to compare the mean
accuracy rates across different models. Following the results
from the ANOVA, Tukey’s honestly significant difference
test was applied to identify specific pairs of models that

demonstrated significant differences in performance. Cohen
d was calculated to quantify the magnitude of differences
between the models, providing a clearer understanding of
the practical significance of the findings. Split-half reliability
testing was used to assess the consistency of each model’s
performance across different subsets of data, ensuring the
reliability of the models over varied test conditions. Statistical
significance was set at an α level of .05.

Results
Overall Model Performance
GPT-4 emerged as the leading model with an accuracy
rate of 83.3% (125/150), significantly outperforming its
peers. Tongyi Qianwen also displayed strong performance,
recording a 70.7% (106/150) accuracy. Moderate effective-
ness was observed in models like Claude and Gemini Pro,
with accuracy rates of 62.0% (93/150) and 55.3% (83/150),
respectively. Bard trailed with a 54.7% (82/150) accuracy
rate, highlighting its challenges in handling complex medical
data under exam conditions (Table 1).

Table 1. Performance of different large language models on radiology board–styled multiple-choice questions without images.
Parameter Test score, n (%)

GPT4 Claude Bard Tongyi Qianwen Gemini Pro
All questions (n=150) 125 (83.3) 93 (62.0) 82 (54.7) 106 (70.7) 83 (55.3)
Question type
  Lower order thinking (n=46) 38 (82.6) 34 (73.9) 27 (58.7) 34 (73.9) 29 (63)
  Higher order thinking (n=104) 87 (83.7) 59 (56.7) 55 (52.9) 72 (69.2) 54 (51.9)
Higher order thinking question categories
  Description and analyze of image findings (n=35) 30 (85.7) 23 (65.7) 20 (57.1) 28 (80) 21 (60)
  Application of concepts (n=38) 34 (89.5) 19 (50) 17 (44.7) 26 (68.4) 17 (44.7)
  Clinical management (n=19) 14 (73.7) 12 (63.2) 12 (63.2) 13 (68.4) 11 (57.9)
  Calculation and classification (n=12) 9 (75) 5 (41.7) 6 (50) 5 (41.7) 5 (41.7)
Question topic
  Digestive (n=15) 10 (66.7) 7 (46.7) 5 (33.3) 10 (66.7) 9 (60)
  Genitourinary (n=21) 19 (90.5) 15 (71.4) 14 (66.7) 15 (71.4) 11 (52.4)
  Musculoskeletal (n=11) 8 (72.7) 6 (54.5) 7 (63.6) 9 (81.8) 7 (63.6)
  Respiratory (n=15) 12 (80) 9 (60) 8 (53.3) 8 (53.3) 8 (53.3)
  Cardiovascular (n=22) 19 (86.4) 14 (63.6) 8 (36.4) 18 (81.8) 11 (50)
  Nervous (n=11) 11 (100) 9 (81.8) 7 (63.6) 8 (72.7) 9 (81.8)
  Breast and thyroid (n=14) 11 (78.6) 9 (64.3) 9 (64.3) 9 (64.3) 7 (50)
  Pediatrics (n=19) 15 (78.9) 11 (57.9) 11 (57.9) 13 (68.4) 9 (47.4)
  Imaging Basics and physics (n=22) 19 (86.4) 11 (50) 12 (54.5) 15 (68.2) 12 (54.5)

Detailed Performance Analysis by
Question Type
The breakdown by question type revealed that GPT-4
consistently excelled in both lower-order and higher-order
thinking questions, scoring 82.6% (38/46) and 83.7%
(87/104), respectively. This indicated GPT-4’s capability
to manage both basic recall and more complex analytical

tasks effectively. In contrast, models such as Claude and
Bard demonstrated a drop in performance with higher-order
thinking questions, achieving only 56.7% (59/104) and 52.9%
(55/104) accuracy in this category, respectively. This gradient
in performance highlighted the difficulties faced by cur-
rent LLMs in simulating the complex cognitive processes
involved in clinical reasoning (Figure 1).
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Figure 1. Model accuracy by question type, illustrating the differentiation in model performance between lower-order and higher-order thinking
questions.

Performance Across Medical Specialties
Performance analysis segmented by medical specialty showed
marked variances. GPT-4 demonstrated exceptional profi-
ciency in neurology with a perfect score of 100% (11/11),
and also performed well in genitourinary and cardiovascu-
lar categories, with accuracies of 90.5% (19/21) and 86.4%
(19/22), respectively. However, challenges were apparent in
areas like musculoskeletal and digestive categories, where
high-performing models like GPT-4 experienced reduced
accuracy rates of 72.7% (8/11) and 66.7% (10/15), respec-
tively. These results indicated that some specialties may need
more tailored domain-specific training for models to enhance
their effectiveness (Table 1).

Detailed odds ratios and CIs for each model are presented
in Multimedia Appendix 1. The odds ratio results show that
GPT-4 had the highest performance. All the other models had
significantly lower odds ratios compared to GPT-4. Tongyi
Qianwen had the highest odds ratio among the other models.
As shown in Multimedia Appendix 2, the pairwise compari-
sons showed that GPT-4 significantly outperformed all other
models, with statistically significant differences observed in
its comparison with Claude (P<.001), Bard (P<.001), Tongyi
Qianwen (P=.009), and Gemini Pro (P<.001). Additionally,
Tongyi Qianwen exhibited a significantly higher accuracy
compared to Bard (P=.004) and Gemini Pro (P=.006). In
contrast, no statistically significant differences were found
between Claude and Bard (P=.20), Claude and Gemini Pro
(P=.24), or Bard and Gemini Pro (P=.90). These results
suggest that the performance of these models was relatively
similar in this dataset.

Discussion
Principal Findings
The exceptional performance of GPT-4 in this study aligns
with recent findings that highlight its advanced reasoning
capabilities and improvements over previous versions, such as
GPT-3.5, in various professional contexts, including various
kinds of medical exams [24]. GPT-4’s extensive training
on diverse datasets and its refined architecture enable it to
adeptly handle complex questions, which are typical in the
specialized language and scenario-based queries found in
medical board examinations [25]. Nevertheless, the perform-
ance differences observed among models like Bard and
Claude can be attributed to the nature of their training and
inherent limitations in processing complex cognitive tasks,
which are crucial in radiology examinations. This is largely
due to the absence of specialized medical training data during
their development phases. These findings are in line with
the research, which indicated that while GPT-4’s textual
reasoning is strong, its integration and analysis of image-
based information remains inadequate [26].

Models such as GPT-4 and Tongyi Qianwen, which
displayed superior performance, likely benefited from
training datasets that included medical scenarios. The
significance of domain-specific training is well-documented,
emphasizing that for LLMs to excel in specialized fields
like radiology, they require training with pertinent medical
data. Both GPT-4 and Tongyi Qianwen exceeded the 70%
passing threshold for the simulated radiology board exams.
This marks a significant achievement and shows the potential
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of these models in academic and professional environments.
The threshold mirrors real medical licensing exam criteria,
offering a realistic measure of AI’s potential performance
in actual educational assessments. The robust performance
of Tongyi Qianwen, particularly in an English-based setup,
is notable. Despite generally not being ranked as highly as
Western models in AI benchmarks, its performance indicates
significant progress in China’s AI development [27]. This
supports calls for more inclusive and diverse training datasets
to reduce biases and improve the global applicability of AI
technologies.

GPT-4 has demonstrated the capability to pass simula-
ted UK Radiology Fellowship Examinations, especially in
sections focused on physics and single best answers [28].
However, challenges remain when these models are tested
with image-based questions, highlighting a persisting gap
between current AI capabilities and the complex demands
of radiological diagnostics [26]. While integrating LLMs into
medical education and assessments promises transformative
changes in how content is delivered and evaluated, there is a
risk of excessive reliance on AI. This overdependence could
potentially undermine the development of critical thinking
and diagnostic skills vital for medical practice [25].
Limitations
This study’s limitations include its sole focus on text-based
questions and the exclusion of visual components, which

are integral to radiology. Future research should incorporate
multimodal assessments and also aim to integrate image
recognition capabilities with textual analysis to improve the
applicability of LLMs in radiology. These models will need to
be fine-tuned with domain-specific datasets to enhance their
practical utility in medical education and clinical diagnostics.
Another notable limitation is the delay between the submis-
sion and publication of peer-reviewed articles, which can
result in outdated assessments of rapidly evolving LLMs. The
models evaluated in this paper were based on their versions
from late November to early December 2023, and significant
advancements have occurred since then, particularly with
models like Claude, which has been regularly updated, with
multiple new versions released by Anthropic. In future work,
we intend to continue discussing the accuracy comparisons
among new models as they are released. Additionally, if
sufficient technical resources are available, we aim to create
a platform to maintain an up-to-date database of LLM
performance on this benchmark.
Conclusion
This article underscores the evolving capabilities and
limitations of LLMs in medical education. While models like
GPT-4 show promise, the path to their effective integration
in clinical practice requires ongoing refinement and a deeper
understanding of their operational dynamics in complex
medical settings.

Data Availability
The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable
request.
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