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Abstract
Background: The GPT-4 is a large language model (LLM) trained and fine-tuned on an extensive dataset. After the public
release of its predecessor in November 2022, the use of LLMs has seen a significant spike in interest, and a multitude of
potential use cases have been proposed. In parallel, however, important limitations have been outlined. Particularly, current
LLMs encounter limitations, especially in symbolic representation and accessing contemporary data. The recent version of
GPT-4, alongside newly released plugin features, has been introduced to mitigate some of these limitations.
Objective: Before this background, this work aims to investigate the performance of GPT-3.5, GPT-4, GPT-4 with plugins,
and GPT-4 with plugins using pretranslated English text on the German medical board examination. Recognizing the critical
importance of quantifying uncertainty for LLM applications in medicine, we furthermore assess this ability and develop a new
metric termed “confidence accuracy” to evaluate it.
Methods: We used GPT-3.5, GPT-4, GPT-4 with plugins, and GPT-4 with plugins and translation to answer questions from
the German medical board examination. Additionally, we conducted an analysis to assess how the models justify their answers,
the accuracy of their responses, and the error structure of their answers. Bootstrapping and CIs were used to evaluate the
statistical significance of our findings.
Results: This study demonstrated that available GPT models, as LLM examples, exceeded the minimum competency
threshold established by the German medical board for medical students to obtain board certification to practice medicine.
Moreover, the models could assess the uncertainty in their responses, albeit exhibiting overconfidence. Additionally, this work
unraveled certain justification and reasoning structures that emerge when GPT generates answers.
Conclusions: The high performance of GPTs in answering medical questions positions it well for applications in academia
and, potentially, clinical practice. Its capability to quantify uncertainty in answers suggests it could be a valuable artificial
intelligence agent within the clinical decision-making loop. Nevertheless, significant challenges must be addressed before
artificial intelligence agents can be robustly and safely implemented in the medical domain.
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Introduction
The GPT—recently updated to its fourth iteration (GPT-4)
—is a generative and autoregressive large language model
(LLM). It is pretrained on a vast corpus of internet text
and fine-tuned on a labeled dataset using a transformer
architecture [1-3]. GPT generates coherent and contextually
appropriate text. It likely discovered a semantic gram-
mar of language (ie, semantic regularities), enabling it to
construct semantically and syntactically correct sentences
[4,5]. However, GPT does not perform meaningful com-
putations on symbolic representations [4-8]. The Wolfram
language, a Turing-complete computational language, in
contrast, allows such symbolic representation. GPT and the
Wolfram language combined hence cover 2 different aspects
of human cognition [4,9,10]. Combining these features,
particularly when computation and symbolic representations
are needed, represents a significant step toward general
artificial intelligence (AI). This combination has already
been successfully used to examine contradictions in Einstein
Special Theory of Relativity equations [11].

In the light of these technological advances, LLMs
show increasing promise in supporting medical training and
practice. However, the models must acquire an in-depth
and accurate representation of medical knowledge to be
used in these sensitive domains. A medical board examina-
tion exemplifies these domains well, as it determines the
qualification of medical students to obtain their license to
practice medicine.

Our primary outcome is the model’s ability to achieve the
minimum required score for passing the 2 written parts of
the German medical licensing examination. This task poses
a different challenge to an LLM than medical board exami-
nations in the English language [12,13], as the performance
of such models in other languages and in combination with
more recent GPT versions and available plugins has not
been explored. In the medical field, where mistakes can have
severe consequences, assessing the amount of uncertainty is
of paramount importance [14]. It is therefore crucial to gain
insights into the depth and structure the LLMs have of the
medical knowledge representation and where its limitations
lie [15]. Hence, our secondary outcomes were the total
correct answer rates, the presence of logical justification
of the answer, the presence of information internal to the
question, the presence of information external to the question,
the confidence GPT displays in its answers, the difficulty
of the question, information errors, logical errors, reasoning
errors, and the correctness of a second try answer when the
first answer was wrong. Insights into these 2 dimensions of
outcomes can contribute to facilitating a meaningful use of
novel LLM technologies in the medical domain.

Methods
Medical Board Examination Dataset
The German medical board examination consists of 3 steps.
The first board examination, taken after 2 years of study,
primarily covers basic natural sciences. It comprises 320
questions, which students answer over 2 consecutive days.
The second board examination takes place after 6 years of
study. It likewise consists of 320 medical questions, which
students answer over 3 consecutive days. The third board
examination, also after 6 years of study, is an oral examina-
tion and was, hence, excluded from this study. The German
medical board examination takes place biannually, once in
spring and once in fall. As a representative sample, we
used the medical board examination from spring 2023. We
excluded questions the medical board examination committee
deemed inconsistent with the medical literature in the regular
post examination review of the content. Additionally, we
did not include questions displaying images, as GPT models
could not analyze them at the time of our analysis. Further-
more, LLMs are not able to analyze images, GPT4vision
which became broadly accessible in the second half of 2023
combines computer vision algorithms—which generate a text
description of images—and LLMs to analyze this text. All
questions and answers were exported from AMBOSS SE,
a German medical education content creator and service
provider.
GPT Models and Prompt Engineering
We evaluated several GPT models with varying charac-
teristics using OpenAI’s web interface. The models tes-
ted included GPT-3.5, GPT-4, GPT-4 integrated with the
Wolfram, ScholarAI, and Web Request (WeGPT.ai) plugins,
and GPT-4 integrated with the Wolfram, ScholarAI, Web
Request plugins, and an additional feature for translating
German inputs into English. We did not investigate earlier
versions of GPT as they demonstrated lower performance in
a similar study on the American medical board examination
[12].

Creating a precise and adequate context is crucial for
generating expected results [16,17]. Thus, we aimed to be
as specific as possible, simulating the context of a medical
student taking the medical board examination. The prompts
hence included the request to answer each respective question
with 5 possible answers, where only 1 answer was cor-
rect. We asked the models to justify their choices based
on the provided patient case information, and to estimate
their confidence in the answer’s accuracy as a percentage
of maximal confidence (ie, 100%). If the selected answer
was incorrect, the GPT models were asked to explain their
mistake in a second attempt. For the GPT-4 model with
plugin integration, we asked the model to use the available
plugins (Wolfram, ScholarAI, and Web Request). For the
GPT-4 model with plugin integration and English translation,
we first asked the model to translate the input into the English
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language, and then to use the translated text to perform the
abovementioned tasks. All used prompts are available in
Multimedia Appendix 1.
Model Testing and Outcome Parameters
For each GPT model, we used the appropriate prompt
followed by the question and the possible answers. The
investigators then analyzed the GPT’s answer to assess
the defined primary and secondary outcomes, which were
either binary or in proportions. In cases of uncertainty, the
investigators (JM, TS, and LB) convened to resolve the
issue.

First, the correctness of the answer was recorded (binary
variable), followed by the presence of logical justification,
the presence of information internal to the question, and
the presence of information external to the question (binary
variables).

Next, we recorded the model’s confidence in its answer
(proportion), and the difficulty of the question, derived from
the number of students who answered correctly on the
AMBOSS platform (proportion).

To enhance our understanding of where GPT models
falter, we sought to classify potential errors. As literature
on error types is limited, we conducted a formal analysis
to determine distinctive error types and established a formal
definition. We propose a classification into 3 categories:
information error, logical error, and reasoning error.

The GPT response can be formalized as “answer A” is
given “link” because of “information B.” There are only three
possibilities for errors: (1) “answer A” is incorrect because
“information B” is incorrect—termed an information error;
(2) “answer A” is incorrect while “information B” is correct,
but the link between them is incorrect—termed a logical
error; (3) “answer A” is incorrect, “information B” is correct,
and the link between “answer A” and “information B” is
correct—termed a reasoning error (Figure 1). If the answer
provided was incorrect, the investigator informed the GPT of
its faulty answer, recorded whether it understood its mistake,
and provided the correct answer in a second attempt. In the
models with integrated plugin use, the active use of plugins
was documented for Wolfram, ScholarAI, and Web Requests
(binary variables).
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Figure 1. Formal definition of error types; we propose a classification into 3 categories: information error, logical error, and reasoning error. The
GPT response can be formalized as “answer A” is given “link” because of “information B.” There are only three possibilities for errors: (1) “answer
A” is incorrect because “information B” is incorrect—termed an information error; (2) “answer A” is incorrect while “information B” is correct, but
the link between them is incorrect—termed a logical error; and (3) “answer A” is incorrect, “information B” is correct, and the link between “answer
A” and “information B” is correct—termed a reasoning error.
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Data Analysis
Summary statistics were calculated for the outcome variables
(Table 1 and Multimedia Appendices 2 and 3). Dichotomous
variables were represented by frequency and proportions with

95% CIs, while continuous variables were expressed as mean
values with 95% CIs. Uncertainty calculations displayed as
95% CIs were computed via bootstrapping [18].

Table 1. Characteristics of GPT model answers (N=541).
GPT-3.5 GPT-4 GPT-4 + plugin GPT-4 + plugin + translation

Correct answer (propor-
tion±95% CI)

373 (0.69±0.65 to 0.73) 493 (0.91±0.89 to 0.93) 493 (0.91±0.89 to 0.94) 486 (0.9±0.87 to 0.92)

Logical justification
(proportion±95% CI)

479 (0.89±0.86 to 0.91) 526 (0.97±0.96 to 0.98) 529 (0.98±0.96 to 0.99) 527 (0.97±0.96 to 0.99)

Question’s difficulty
mean (±95% CI)

0.288 (0.272 to 0.303) 0.288 (0.272 to 0.303) 0.288 (0.272 to 0.303) 0.288 (0.272 to 0.303)

Error overall
(proportion±95% CI)

168 (0.31±0.27 to 0.35) 48 (0.09±0.07 to 0.11) 48 (0.09±0.06 to 0.11) 55 (0.1±0.08 to 0.13)

Presence of internal
information
(proportion±95% CI)

521 (0.96±0.95 to 0.98) 537 (0.99±0.98 to 1) 537 (0.99±0.98 to 1) 537 (0.99±0.98 to 1)

Presence of external
information
(proportion±95% CI)

538 (0.99±0.99 to 1) 540 (1±0.99 to 1) 541 (1±1 to 1) 541 (1±1 to 1)

Information error
(proportion±95% CI)

37 (0.22±0.16 to 0.29) 5 (0.1±0.02 to 0.19) 5 (0.1±0.02 to 0.2) 7 (0.13±0.05 to 0.22)

Logical error
(proportion±95% CI)

61 (0.36±0.29 to 0.43) 18 (0.38±0.25 to 0.52) 12 (0.25±0.125 to 0.375) 19 (0.35±0.22 to 0.47)

Confidence mean (±95%
CI)

0.912 (0.904 to 0.918) 0.938 (0.934 to 0.942) 0.919 (0.915 to 0.924) 0.919 (0.915 to 0.923)

Use of plugin Wolfram
(proportion±95% CI)

N/Aa N/A 50 (0.09±0.07 to 0.12) 47 (0.09±0.06 to 0.11)

Reasoning error
(proportion±95% CI)

72 (0.42±0.36 to 0.51) 26 (0.54±0.4 to 0.69) 30 (0.63±0.48 to 0.75) 29 (0.53±0.4 to 0.65)

Correct answer in second
try (proportion±95% CI)

90 (0.54±0.46 to 0.61) 32 (0.67±0.52 to 0.79) 36 (0.75±0.63 to 0.88) 33 (0.6±0.47 to 0.73)

Use of plugin ScholarAI
(proportion±95% CI)

N/A N/A 107 (0.2±0.16 to 0.23) 47 (0.09±0.06 to 0.11)

Use of plugin web
requests (proportion±95%
CI)

N/A N/A 2 (0.003±0 to 0.01) 25 (0.05±0.03 to 0.06)

aN/A: not applicable.

The primary outcome was determined by comparing the
performance of the GPT-4 model, integrated with the plugins
and the English translation, to the required passing score for
the medical board examination, which is 60%. The difference
of proportions was calculated with 95% CI using bootstrap-
ping (Multimedia Appendix 4).

Subsequently, secondary outcomes were calculated: the
final examination rate for each GPT model was compared
to both chance and the required passing score for the

medical board examination. The difference of proportions
was calculated with 95% CI using bootstrapping (Multimedia
Appendix 4).

The proportions of logical justification within the answer,
information internal to the answer, and information external
to the answer were compared between correct and incor-
rect responses. The difference of proportions was calculated
with 95% CI using bootstrapping (Table 2 and Multimedia
Appendix 5).
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Table 2. Analysis of plugin-integrated GPT-4 model answers.
All correct answers
(n=493)

All incorrect answers
(n=48)

Difference in proportions or
Cohen d or Pearson r (±95%
CI)

Confidence
accuracy (±95% CI)

Comparison of GPT models justifications between correct and incorrect answers
GPT-4 + plugin (N=541)

Logical justification
(proportion ±95% CI)

493 (1±1 to 1) 36 (0.75±0.63 to 0.88) 0.25 (0.13 to 0.38)a —b

Internal information
(proportion ±95% CI)

489 (0.99±0.983 to 998) 48 (1±1 to 1) 0 (-0.01 to 0)a —

Comparison of GPT models justifications between correct and incorrect answers
External information
(proportion ±95% CI)

493 (1±1 to 1) 48 (1±1 to 1) 0 (0 to 0)a —

Confidence of GPT models compared between correct and incorrect answers
GPT-4 + plugin (N=541)

Confidence mean (±95% CI) 0.923 (0.918 to 0.928) 0.886 (0.87 to 0.901) -0.69 (-0.99 to -0.39)c 0.037 (0.021 to
0.053)

Comparison of question’s difficulty of GPT models between correct and incorrect answers
GPT-4 + plugin (N=541)

Question’s difficulty mean
(±95% CI)

0.279 (0.263 to 0.295) 0.379 (0.327 to 0.438) 0.57 (0.27 to 0.86)c —

Correlation of confidence and question’s difficulty for all answers
GPT-4 + plugin (N=541) -0.0874 (-0.176 to 0.004)d

Confidence mean (±95% CI) 0.920 (0.916 to 0.924) — —
Question’s difficulty mean
(±95% CI)

— 0.288 (0.273 to 0.304) —

Comparison of correct answers between GPT models (N=541)
GPT-4 + plugin vs GPT-3.5

Correct answer rate
(proportion ±95% CI)

373 (0.69±0.65 to 0.73) 493 (0.91±0.89 to 0.94) 0.22 (0.18 to 0.27)a —

GPT-4 + plugin vs GPT-4
Correct answer rate
(proportion ±95% CI)

493 (0.91±0.89 to 0.94) 493 (0.91±0.89 to 0.94) 0 (-0.03 to 0.03)a —

GPT-4 + plugin vs GPT-4 + plugin + translation
Correct answer rate (propor-
tion ±95% CI)

493 (0.91±0.89 to 0.94) 486 (0.9±0.87 to 0.92) -0.01 (-0.05 to 0.02)a —

aDifference in proportions.
bNot available.
cCohen d.
dPearson r.

The model’s confidence in its answers was compared between
correct and incorrect responses. Additionally, the relation-
ship between the model’s confidence in its answers and the
difficulty of the question was assessed. Cohen d values and
95% CI were computed using a linear regression model and
bootstrapping (Table 2 and Multimedia Appendices 6 and 7).

To evaluate the accuracy of the model’s confidence in
its answers, we developed a parameter termed confidence
accuracy (CA). It is defined as follows:

CA = (confidence of correct answers in percentage –
confidence of incorrect answers in percentage)/100

Consequently, this parameter can take values from −1
to 1, where 1 accurately reflects the model’s uncertainty, 0

indicates no ability to quantify uncertainty, and −1 suggests
incorrect quantification.

The difficulty of the question was assessed using real
correct response proportions from students available on the
AMBOSS platform. The difficulty was assessed as follows:

Difficulty=1 – correct answer proportion
Then, the difficulty of the question was compared between

correct and incorrect answers, with Cohen d calculated using
a linear regression model (Table 2 and Multimedia Appendix
7).

Furthermore, we compared the proportion of correct
answers between models (Table 2 and Multimedia Appendix
8).
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We compared the proportion of correct answers in the
GPT-4 models with the proportion of correct answers in the
answers where a plugin has been used. We compared the
proportion of plugin usage in GPT models with German and
English input. We compared the confidence of the model
when using plugins to the confidence of the model over-
all. We compared the proportion of correct answers when
averaging the 4 different models to each model in particular
(Multimedia Appendix 9).

In instances where questions were accompanied by
images, GPT models sometimes responded by describing the
image, although the models could not access the respective
images. This phenomenon is known as a type of hallucination
[19]. Therefore, we compared the proportion of hallucinations
present in each model when answering questions, including
image questions. We calculated the proportion of correct
answers for each model when keeping the questions with
pictures (Multimedia Appendix 9).

We compared the different error proportions between
different models. We compared the proportion of logical
errors when using the Wolfram plugin to the proportion of
errors when using the entire model. We compared correct
second-try answers between different models (Multimedia
Appendix 9).

The 95% CIs were calculated using bootstrapping. Where
necessary, parametric assumptions were tested using quantile-
quantile plots for normality and Levene tests for the
homogeneity of variances. The independence of question
answers was assumed. All statistical analyses were performed
in RStudio (version 2023.06.0+421). The significance level
for all tests was set a priori at 95% CI.

Results
All tests were performed on the 541 questions of the German
medical board examination from spring 2023. Sub analyses
were performed on other subgroups, the respective sample
sizes are indicated in the appropriate tables. All results for
GPT-3.5, GPT-4, GPT-4 + plugin (GPT4P), and GPT-4 +
plugin + translation (GPT4PT) are listed in full detail in the
tables and the supplementary materials. To ensure legibility,
only relevant results are addressed in the results section.

Descriptive statistics with CIs for the first board examina-
tion, second board examination, and the overall examination
are displayed in Table 1 and Multimedia Appendices 2 and 3.

All models performed significantly better than chance.
Furthermore, all GPT models were significantly better than
the required proportion to pass the final medical board
examination.

All GPT models had a significantly higher proportion of
providing a logical justification for correct answers compared
to incorrect answers (Table 2 and Multimedia Appendix 5).
Yet, there was no statistical significance for the proportion
of used internal information for correct and incorrect answers
(Table 2 and Multimedia Appendix 5). Similarly, there was
no statistical significance for the proportion of used external

information for correct and incorrect answers (Table 2 and
Multimedia Appendix 5).

Although generally high for both incorrect and correct
answers, models had a confidence mean which was signif-
icantly higher for correct answers than incorrect answers
(Table 2 and Multimedia Appendix 6). This is reflected in CA
values significantly different from zero: GPT-3.5 (0.028, 95%
CI 0.011 to 0.048), GPT-4 (0.041, 95% CI 0.023 to 0.062),
GPT4P (0.037, 95% CI 0.021 to 0.053), and GPT4PT (0.043,
95% CI 0.028 to 0.059).

From all models, only GPT4P made significantly more
reasoning errors than logical errors (0.37, 95% CI 0.125 to
0.60). All models made significantly more reasoning errors
than information errors: GPT-3.5 (0.21, 95% CI 0.11 to 0.30),
GPT-4 (0.44, 95% CI 0.27 to 0.60), GPT4P (0.52, 95% CI
0.31 to 0.71), and GPT4PT (0.40, 95% CI 0.20 to 0.58). All
models but GPT4P made significantly more logical errors
than information errors: GPT-3.5 (0.14, 95% CI 0.029 to
0.26), GPT-4 (0.27, 95% CI 0.10 to 0.44), and GPT4PT (0.22,
95% CI 0.05 to 0.38). GPT-4 (0.12, 95% CI 0.05 to 0.22) and
GPT4P (0.12, 95% CI 0.02 to 0.22) made significantly less
information errors than GPT3.5.

The GPT4-based models all performed better than the
GPT 3.5 model in providing correct answers as reflected in
the difference of correct answer proportions (Table 2 and
Multimedia Appendix 8). However, no GPT4-based model
was better than another GPT4-based model, as reflected in
the difference of correct answer proportions (Table 2 and
Multimedia Appendix 8).

Discussion
Primary Outcome
All GPT models assessed performed above the minimum
required score of 60%. The GPT-4 models performed
particularly well, outperforming most students in the given
examinations. Specifically, for the first board examination,
all GPT-4 models performed better than 98.6% of students.
For the second board examination, they surpassed 95.8% of
students, as detailed in the records of the examining body
[20].

In general, there was a significant gap between GPT-3.5
and the GPT-4 models. The more recent models, with
substantially more parameters and the capacity to remember
longer prompts, appear to increase the accuracy of responses.
However, we observed no additional benefit when GPT-4
models were paired with plugins.

The use of plugins did not yield a higher proportion
of correct answers than the standard model. It is possible
that GPT-4 already achieves a very high rate of accuracy,
resulting in a ceiling effect. Hence, the addition of plugins
may not offer a significant advantage for the questions
prompted.

During our study, we noted that the Wolfram plugin was
frequently used for more complex calculations. Yet, in the
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context of clinically applicable questions, complex mathe-
matical procedures are typically not required and the use
of symbolic language is usually not required. Thus, using
the Wolfram Alpha plugin is likely more beneficial for
questions that involve extensive computations or advanced
mathematical problems requiring symbolic representations.
The ScholarAI plugin was activated for complex informa-
tional queries, but the resulting papers were not consistently
useful. Surprisingly, the Internet Access plugin (WeGPT.ai)
was the least used. This may be because answering medi-
cal questions typically demands expert-level knowledge, and
general internet searches do not provide sufficiently specific
information. Moreover, since the model has been trained on
a vast amount of internet data, it likely already encompasses
the knowledge available from the world wide web within its
parameters.

We speculated that posing questions in German might
hinder the model’s access to the broader body of knowledge
available in English. However, this was not the case; the
GPT model equipped with translation capabilities did not
outperform the GPT-4 models without translation features.
The GPT model likely abstracts high-level concepts and is not
impeded by the language of the queries. This aligns with the
LLMs’ transformer architecture, which accesses higher-level
concepts prior to translating text into another language [21].

Interestingly, the GPT-4 model with translation invoked
plugins less frequently than the model without translation.
We hypothesize that plugin calls occur at a lower level in
the neural network, making them less necessary in English
due to the larger available language corpus. In German, the
model might need to delve deeper into the latent representa-
tion of concepts not tied to a specific language. However, this
remains speculative and warrants further research.
Secondary Outcomes
While all models provided a very high proportion of logical
justification for correct answers, it was significantly less
extensive for incorrect answers. However, upon further
analysis, we did not detect a significant difference in the
proportion of internal information from the question in the
answer or in the use of external information not contained
in the question between correct and incorrect answers. One
study already assessed the presence of logical justification
in answers to United States Medical Licensing Examination
questions, where all answers exhibited logical justification
regardless of their accuracy [12]. Hence, this metric could not
be used as a discriminator for correctness.

We were unable to demonstrate a significant correlation
between the model’s confidence in an answer and the
difficulty level of the question for humans. This suggests that
the model’s interpretation of question difficulty differs from
that of humans. However, as with humans, the model showed
improved performance on easier questions compared to more
challenging ones. Thus, it appears that the representation of
question difficulty is distinct between LLMs and humans.

Conceptual Implications

Use for Medical Education
This performance suggests that LLMs such as GPT could
assume a greater role in medical education, as their integra-
tion could significantly change the conventional approach
to medical education, which has traditionally emphasized
the acquisition and maintenance of medical knowledge. The
emergence of AI agents with superior information retention
abilities, however, prompts a reevaluation of our educational
focus. In this light, teaching methodologies could shift
toward navigating and structuring available information with
respective AI agents. The approach could hence shift from
retaining information to learning how to efficiently access
information and deeply understand these systems, along with
their benefits and drawbacks.

Use in Clinical Practice
The utility of LLMs is not limited to educational settings but
also extends to clinical practice. Although LLMs may not
be as effective in highly specialized tasks where dedicated
machine learning algorithms excel—for instance, XGBoost
in identifying pulmonary embolisms [22-24] — LLMs are
highly proficient in text processing and information inte-
gration from diverse algorithms [25]. This positions them
as intelligent medical assistants, capable of transforming
complex data into narratives that are comprehensible in a
human context. Currently, clinicians have a limited under-
standing of AI agents and their functions. Clinicians must,
therefore, gain a thorough understanding of how various AI
agents function, including their strengths and weaknesses.

With insufficient knowledge on the principles of LLM-
based assistants, clinicians are at risk of blindly following
such assistant’s guidance without fully understanding its
operations [26,27]. Due to the inherent complexity of LLMs,
which often function as a black box, we can only partially
monitor their operations at varying levels of complexity and
behavior [26]. Given the marginal uncertainty intrinsic to
such complex models, the AI agent should not supplant
clinicians in decision-making, but rather provide additional
informed perspectives.

To serve as a useful assistant, however, the assessment of
uncertainty for any output provided by such is crucial. The
key attribute enabling this evaluation is the ability to quantify
uncertainty, a trait humans are presumed to possess [14]. For
LLM-based assistants to provide a comparable estimate, a
standardized measure is needed to gauge the confidence in
an AI agent’s output. For binary outcomes such as healthy
or diseased, metrics such as specificity, sensitivity, and area
under the curve are effective. For more complex queries
with multiple potential answers—as managed by LLMs—
traditional measures such as sensitivity and specificity are
inadequate. We therefore developed a new metric called
“confidence accuracy” (CA) which correlates the confidence
assigned to an answer with its empirical accuracy. This allows
for the quantification of uncertainty, crucial for clinical
decision-making. Although our work showed that all GPT
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models have the ability to quantify uncertainty, the expression
in percentage does not seem to reflect the confidence for
any specific decision (ie, the models were overall largely
overconfident). Although statistically different from zero, CA
values were consistently close to zero. New LLM method-
ologies aim to enhance this by incorporating uncertainty
estimation [28]. Future AI agents should be fine-tuned using
the CA metric in order to improve uncertainty quantification,
a critical objective for implementing AI as a supportive tool
for physicians in clinical environments.
Identified Errors
We observed that GPT models commit different types
of errors, particularly reasoning errors. Reasoning errors
typically occur in situations where multiple options are
correct, but one is more critical than the other. GPT
models over proportionately make reasoning errors likely
because this skill is acquired through human experience
and is challenging to learn from text-based web sources.
The second most common error type in GPT models was
logical errors. Since LLMs use a statistical approach to
reconstruct human-written text, we anticipated difficulties
with logic and mathematics, which require formal symbolic
representation [4-8]. We hypothesized that the Wolfram
plugin, using the Wolfram language, would mitigate these
challenges. Yet, using the Wolfram plugin did not reduce the
number of logical errors. Finally, fewer information errors
were observed compared to other error types across all GPT
models. This likely reflects the strength of these LLMs, which
have assimilated a vast corpus of knowledge. In addition to
the 3 error types derived from the informational and logical
structure of GPT’s answers, there are 2 sources of bias that
arise prior to answer generation. First, due to the stochastic
nature of token generation, there is likely a stochastic bias
inherent in all GPT responses. Second, due to in-context
generation conditioned by the prompting strategy, a system-
atic bias probably occurs as well. We attempted to mitigate
the stochastic bias by averaging the results from all mod-
els and selecting the most common outcome. However, the
performance of such averaged models did not surpass that of
the GPT-4 models.

To assess whether the GPT models could recognize and
correct their own mistakes, we prompted them to attempt
another answer after providing incorrect responses. In most
instances, the model would acknowledge the mistake and
provide the correct answer along with a new explanation.
This phenomenon could likely be attributed to the differing
mechanics of forward and backward reasoning in LLMs.
With forward reasoning, the LLM calculates the probability
of the next token without a specific reasoning goal [29].
In contrast, backward reasoning enables the LLM to better
contextualize the information. It is crucial to note, however,
that we did not request the model to immediately reassess the
answer; instead, we informed it of the answer’s incorrectness
before asking for a reevaluation [29]. Future studies could
further investigate the model’s ability to self-correct without
prior notification of its errors.

In instances where questions were accompanied by images
(ie, the model did not have access to the images), GPT
models, particularly GPT-3.5, often responded by describ-
ing the image that the model had not actually seen. This
unexpected information error, known as a hallucination [19],
persisted in the GPT-4 models, albeit at a significantly
reduced frequency compared to GPT-3.5. Nevertheless, the
propensity for overconfidence in entirely fabricated informa-
tion remains a challenge for the latest generation of LLMs
and is a phenomenon not fully understood [30].
Limitations

Technological Limitations of LLMs
Although the results were impressive with GPT outperform-
ing most students in the German medical board examination,
it is crucial to remember that these models still possess
significant limitations. At the time of our data collection,
GPT-4 was incapable of interpreting medical images, such
as chest x-rays or histological samples. This is a considera-
ble drawback, given that medical information is inherently
multimodal, and the ability to integrate multimodal data will
be essential for the adoption of such models in academic and
clinical settings. It is anticipated that future GPT iterations
and other LLMs will be fully multimodal, which necessitates
additional research to evaluate their performance across a
more diverse array of questions.

A second concern relates to the stochastic nature of token
generation, meaning that answers may vary slightly when
questions are posed multiple times [31].

A third concern pertains to the prompt sensitivity of
LLMs. This trait can be advantageous as it allows the
incorporation of context into the generation of meaningful
output and may contribute to the models’ Bayesian character-
istics [32]. However, prompt sensitivity also increases the risk
of systematic errors with repetitive use of the same prompt.
Prompt engineering is a discipline that emerged in trying to
minimize systematic errors [33,34].

Within the extensive volume of data available online, there
are significant risks of bias. Given that LLMs are trained on
vast datasets, there is an inherent risk of adopting biases from
the underlying data structures. However, fine-tuning through
supervised learning on labeled data can help mitigate these
risks [35,36].

Limitations of the Use of LLMs in a Medical
Context
Despite the seemingly immediate promise of using LLMs in
both educational and clinical contexts, the current ethical and
regulatory environment needs to be considered to advance the
use of these novel technologies safely.

As the representation of medical information of an LLM
must not be confused with medical knowledge from a medical
professional, it remains crucial to enable students and medical
professionals alike to identify LLM-generated outputs as such
in order to interpret them very carefully. Different to, for
example, a senior medical colleague providing guidance for a
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clinical decision, an LLM-generated output is neither based
on clinical knowledge, nor experience. The risk of such
confusion has been described as anthropomorphic projection
and efforts for advancing these novel technologies in the
medical field need to simultaneously foster the awareness
of such phenomena. This differentiation resonates with the
provisions of the European Union (EU) on a risk-based
assessment approach [37] and, more recently, with the
Bletchley Declaration [38]. The latter emphasizes the risks
at the “frontier” of AI, at which we operate with the presented
project.

While the concerns discussed in the context of medical
education—and, more widely, training—are mainly within
the realm of AI ethics, more specific limitations apply to the
clinical use of these technologies. At the time of our analysis,
no commercially available LLM in the EU—including the
GPT versions assessed in this work—have an assigned
intended medical use, a basic regulatory prerequisite for their
use in a clinical context. Without such intended medical
use, the Medical Device Regulation (MDR), the regulatory
framework for medical devices in the EU, is not applicable.
Hence, such a device would not be a medical device in
the regulatory sense and could, therefore, not be used in
a clinical context without irresponsible safety and liability
risks. While it is not the user (eg, researchers or clinicians),
but the manufacturer (eg, OpenAI for the ChatGPT models)
who assigns an intended medical use—which itself comes
with further regulatory requirements—the clinical use of the
currently available and mostly all-purpose LLMs remains
challenging.

Yet, even developing an LLM with an intended medical
use and fulfilling all adjacent regulatory requirements would
—as of now—not necessarily resolve the challenge centering
around the clinical use of such program, as a key requisite for
software as a medical device outlined in the MDR (“devices
that incorporate electronic programmable systems, including
software, or software that are devices in themselves, shall be
designed to ensure repeatability, reliability and performance
in line with their intended use.” MDR Annex I, Rule 17.1
[39]) is currently considered to be violated, although this
question remains subject to debate.

However, the rapid development of technological advances
and the concurrent establishment of respective regulations
should not be perceived as a “race to get to grips with AI”
[40], but should be viewed as a co-evolution to eventually

yield the best population-wide benefit from these technologi-
cal advances. In this light, the emphasis of a “pro-innovation
and proportionate governance,” as proposed in the Bletchley
Declaration, is equally as crucial as the implementation of
regulatory frameworks.

Limitations of This Study
Our study has several limitations. We used a specific
German medical board examination as a sample to repre-
sent the general distribution of medical questions. While it
is acknowledged that questions evolve over time and may
introduce bias, the objective of the medical board examina-
tion is to maintain a consistent level of difficulty, reflecting
the minimum required knowledge to attain board approval
for medical practice. The distribution of student grades has
remained relatively stable over time, leading us to believe that
this potential bias is minimal. In the model with translation,
we used GPT to translate the questions before applying
them to the model. Although we did not observe any, it is
possible that translation errors occurred, potentially acting as
a confounder in this study. In the context of the medical board
examination, multiple-choice questions are posed to elicit
clear answers that can be quantitatively assessed. By contrast,
in a clinical setting, questions tend to be open-ended, which
introduces a different dynamic. Nevertheless, we asked the
model to justify its answers to glean insight into its computa-
tional process, thus rendering the questions more comparable
to open-ended inquiries.
Conclusion
The performance of GPT models in the German medical
board examination have surpassed both the passing thresh-
old and the performance of most students. While GPT
appears to possess a latent representation of uncertainty, it
currently exhibits a significant degree of overconfidence.
The introduced metric of CA could facilitate the appropri-
ate measurement and fine-tuning of models to improve
this aspect. However, there are numerous limitations that
clinicians should be aware of. Challenges such as hallu-
cinations, the stochastic nature of token generation, and
prompt sensitivity are highlighted, indicating areas for further
research and development. Further, we see the remaining
open questions regarding the ethical and regulatory use of
LLMs in the educational and clinical context, which need to
be addressed on a policy level.
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