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Abstract

Background: History-taking is crucial in medical training. However, current methods often lack consistent feedback and
standardized evaluation and have limited access to standardized patient (SP) resources. Artificial intelligence (Al)-powered
simulated patients offer a promising solution; however, challenges such as human-Al consistency, evaluation stability, and
transparency remain underexplored in multicase clinical scenarios.

Objective: This study aimed to develop and validate the Al-Powered Medical History-Taking Training and Evaluation System
(AMTES), based on DeepSeek-V2.5 (DeepSeek), to assess its stahility, human-Al consistency, and transparency in clinical
scenarios with varying symptoms and difficulty levels.

Methods: We developed AMTES, a system using multiple strategies to ensure dialog quality and automated assessment. A
prospective study with 31 medical students evaluated AMTES's performance across 3 cases of varying complexity: asimple case
(cough), a moderate case (frequent urination), and a complex case (abdominal pain). To validate our design, we conducted
systematic baseline comparisons to measure the incremental improvements from each level of our design approach and tested
the framework’s generalizability by implementing it with an alternative large language model (LLM) Qwen-Max (Qwen Al;
version 20250409), under a zero-modification condition.

Results: A total of 31 students practiced with our AMTES. During the training, students generated 8606 questions across 93
history-taking sessions. AMTES achieved high dialog accuracy: 98.6% (SD 1.5%) for cough, 99.0% (SD 1.1%) for frequent
urination, and 97.9% (SD 2.2%) for abdominal pain, with contextual appropriateness exceeding 99%. The system’s automated
assessments demonstrated exceptional stability and high human-Al consistency, supported by transparent, evidence-based
rationales. Specifically, the coefficients of variation (CV) were low across total scores (0.87% - 1.12%) and item-level scoring
(0.55% - 0.73%). Total score consistency was robust, with the intraclass correlation coefficients (ICCs) exceeding 0.923 across
all scenarios, showing strong agreement. The item-level consistency was remarkably high, consistently above 95%, even for
complex caseslike abdominal pain (95.75% consistency). In systematic baseline comparisons, the fully-processed system improved
| CCsfrom 0.414/0.500 to 0.923/0.972 (moderate and complex cases), with all CVs<1.2% acrossthe 3 cases. A zero-modification
implementation of our evaluation framework with an alternative LLM (Qwen-Max) achieved near-identical performance, with
the item-level consistency rates over 94.5% and | CCs exceeding 0.89. Overall, 87% of students found AMTES helpful, and 83%
expressed adesire to use it again in the future.

Conclusions: Our data showed that AMTES demonstrates significant educational value through its LLM-based virtual SPs,
which successfully provided authentic clinical dial ogswith high response accuracy and delivered consistent, transparent educational
feedback. Combined with strong user approval, these findings highlight AMTES's potential as a valuable, adaptable, and
generalizable tool for medical history-taking training across various educational contexts.

(JMIR Med Educ 2025;11:e€73419) doi:10.2196/73419
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Introduction

History-taking is fundamental to clinical practice and one of
the clinicians’ most frequently performed tasks [1]. Although
technological advances in assessing patients have proliferated,
history-taking remainsthe most crucial, cost-effective technique
[2]. Therefore, enhanced training in medical history-taking is
crucia for both improving disease diagnosis accuracy [3-5] and
fostering the development of competent physicians [6].

Standardized patients (SPs) effectively teach and evaluate
history-taking skills by ensuring structured learning experiences.
The training process for SPsis rigorous, time-consuming, and
resource-intensive [7,8]. Consequently, the availability of
qualified SPs is limited [7]. During SP-based teaching and
evaluation, subjective factors are an unavoidable influence [9].
Existing literature suggests SP feedback is highly variable in
terms of its content and quality [10,11]. These factors pose a
significant challenge to implementing effective one-on-one
history-taking training.

The rapid evolution of artificial intelligence (Al) technology,
especially with the emergence of largelanguage models (LLMs),
has demonstrated significant potential in medical education
[12-16]. LLMs can act as virtual standardized patients (\V SPs)
[12,17-19] and create a human-like conversational experience
[12,20]. In addition, the web-based system is accessible at any
time, allowsrepeated practice, and significantly reducesteaching
costs. However, feedback is the cornerstone of medical
education and is crucial for the continuous learning of trainees
[21]. Therefore, asystem that only providesinteractive practice
without structured feedback may fail to meet the instructional
needs.

Encouragingly, LLMs can also provide instant feedback. A
recent single-case study has shown that an LL M-powered VVSP
can not only provide accurate interactions but also implement
structured eval uations with high human-Al consistency for most
assessment items, while identifying a subset of items where
further alignment could significantly enhance performance[22].
Theinherent scalability and personalization capabilitiesof LLMs
may address the inefficiencies and inconsistencies associated
with traditional feedback, holding the promise of democratizing
high-quality learning experiences. These findings offer
preliminary evidence for applying LLMs to evaluate medical
history-taking training.

Degspite these promising developments, implementing Al as
VSPs presents several challenges and technical limitations,
particularly in providing real-time educational feedback [23].
First, while some preliminary studies have explored LLMs in
medical history-taking evaluation, there remains a gap in
research investigating multiple cases of varying difficulty levels
across different clinical scenarios. Specifically, given the
diversity of disease typesin clinical practice and the variations
in content and evaluation standards for history-taking across
different diseases, further exploration isrequired to assesstheir

https://mededu.jmir.org/2025/1/€73419

applicability and effectiveness in a broader range of clinical
Settings.

Second, LLMs may generate “hallucinations,” producing
information that appearsreasonable but isincorrect [24], leading
to different responses to the same query. Even the most
advanced models may struggle to handle complex or highly
specialized inputs, affecting the accuracy of their outputs.
Furthermore, their decision-making process lacks transparency,
resulting in users unabl e to understand the basis on which they
draw conclusions, presenting a “black box” problem [25,26].
Thisblack box characteristic rai ses doubts about their evaluation
results. Research showsthat the transparency and credibility of
evaluation feedback significantly influence learner acceptance,
particularly for Al-generated feedback, which requires clear
evaluation criteria and frameworks [23].

Moreover, these risks highlight the importance of adding an
extralayer of validation, especially for complex teaching tasks
that directly affect patient diagnosis and treatment. It is evident
that current LLMs cannot yet be solely relied upon in thefields
of education and research. Therefore, to identify and prevent
these safety risks, developing a systematic assessment system
with broad adaptability is particularly important [27].
Consequently, when developing LLM-powered evaluation
systems, special attention must be paid to making the evaluation
process transparent and standardized. Finally, the stability of
LLM-generated eval uations remainsto be characterized, which
isacritical factor for long-term application in teaching.

To address these gaps, we developed the Al-Powered Medical
History-Taking Training and Evaluation System (AMTES).
This study describes its development and rigorously evaluates
its dialog quality, evaluation stability, human-Al consistency,
and transparency across 3 clinical cases of varying complexity.
We also validated our design through systematic baseline and
cross-model comparisons.

Methods

System Design and I mplementation of AMTES

Overview of AMTES

AMTES is aweb-based system developed using the ASPNET
framework (Microsoft) with aBrowser/Server architecture. The
system seamlessly integrates the DeepSeek-V 2.5 (DeepSeek)
application programming interface (API), a sophisticated
Chinese LLM. This model was selected after demonstrating
superior performance for our specific medical dialog tasks in
preliminary tests against other domestic modelsavailable during
the study’s implementation phase, thereby best fulfilling the
project's technical and accessibility requirements.
DeepSeek-V2.5 features an advanced architecture with 236
billion parameters and supports an extensive context window
of up to 128,000 tokens, enabling robust natural language
understanding and complex reasoning capabilities across
extended conversations. The AMTES software has been granted
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the Computer Software Copyright Registration Certificate by  history-taking conversations with a VSP while recording all
the National Copyright Administration of China (Registration interactions for evaluation; (2) the Automated Evaluation
No. 14651073). Feedback Module, which analyzes dialog records using LLM
System Modules technology to generate structured feedback. These 2 modules

congtitute the core of the system: simulation (conversational
AMTES consists of two core modules: (1) the conversational  dialog) and assessment (automated evaluation).

Diadlog Module (Figure 1), which enables multiround

Figure 1. History-taking interface showing the chat environment where students interact with the virtual standardized patient.

@ Knowledge base

History-taking exercise

Time elapsed: 1 minute 41 seconds

Case information: Male, 28 years old, presented with "abdominal pain”.

Exchange 1:
Doctor: Hello Mr. Zhang, I'm Dr. Huang. I'll be examining you today. What seems to be

bothering you?
2024-10-27 20:15:00

Patient: | have abdominal pain.

2024-10-27 20:15:01

Exchange 2:

Doctor: Could you specify where exactly the pain is located?

2024-10-27 20:15:25

Patient: Pain in the upper-middle abdomen.

2024-10-27 20:15:26

I{D

Submit for evaluation Save for later

step-by-step description of each stageisprovided in Multimedia

System Wor kflow Appendix 1.

The complete system workflow, from student login through
final evaluation delivery, isillustrated in Figure 2. A granular,
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Figure2. Systemworkflow diagramillustrating the complete medical history-taking training and evaluation processin the Artificia Intelligence-Powered
Medical History-Taking Training and Evaluation System. LLM: large language model

Students log into system System loads the

and select a case virtual patient script

Ml:jl_tirlound Submit for
gl ialog = }
(Virtual patient) evaluation

Integrate scoring results
from 4 subsets

Divide scoring criteria into 4 subsets
for parallel evaluation

@@F)@

LLM

Final evaluation Verification:

« Original text matching
» Keyword validation

and score details

System Design Strategies

This subsection elaborates on the underlying principles and
innovations guiding AMTES's devel opment.

Framework Objectives and | mplementation Strategies

To ensure AMTES meets clinical education requirements, we
implemented a comprehensive design framework with specific
strategies aimed at achieving system reliability, human-Al

https://mededu.jmir.org/2025/1/€73419

RenderX

« Semantic understanding
* Preliminary scoring

consistency, and evaluation transparency (Table 1). System
design framework and implementation strategies present this
multifaceted framework in a structured format designed to
clearly delineate each objective, the strategies used, and their
specific implementation methods. These strategies were
engineered specifically to address the key LLM challenges of
transparency and hallucination identified in the introduction,
ensuring the system’s reliability and trustworthiness.
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Table. System design framework and implementation strategies.
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Core objective and strategy

Key methods

Specifications and examples

A. Reliability assurance (ensuring accurate and stable system outputs)

Minimizing randomness

Implementing multilevel verification®

Parallelizing eva uations?

L ower the temperature parameter of the LLM’s?
b
API

1. Original-text matching: verifies whether the
LLM-cited dialog exists verbatim in the original
dialog

2. Keyword validation: confirms the presence of
predefined mandatory keywordswithin the cited
evidence

Split scoring itemsinto 4 subsets for parallel
LLM queries

B. Human-Al Consistency (aligning Al evaluations with expert judgment)

Decomposition for standardization

Disambiguation via guidelines

Few-shot examples

Complex scoring items decomposed into smaller,
unambiguous sub-itemsto improve LLM execu-
tion accuracy

Detailed evaluation guidelines for contextual

differentiation and terminology clarification

Usesin-prompt examplesto demonstrate correct
scoring

C. Transparency enhancement (making evaluation processes traceable and verifiable)

Evidence-based scoring®

Structured feedback

Prompt engineering compelsLLM to cite specific
dialog text and explain the rational e for transpar-
ent decision-making

Organizes feedback hierarchically, from overall
metrics down to item-level specifics

Dialog: set temperature as 0.05; assessment: set
temperature as 0.0

The specific strategy isin Multimedia A ppendix
2

Benefits: enables evidence-based scoring by cir-
cumventing token limits; reduces evaluation time
through parallel processing

For example, original: “ persistent moderate-to-
severe burning abdominal pain” - 3 sub-items:
1. Painisburningin nature

2. Painismoderate to severe

3. Painispersistent

For example, context: “initial dull pain” versus
“current burning pain”; terminology: “ petechi-
ae’=small red hemorrhagic spots

The complete prompt isavailablein Multimedia
Appendix 3

The complete prompt isavailablein Multimedia
Appendix 3, “Final Output Format” section

Hierarchy: overall performance - category
analysis — item details — dialog links

4 _LM: large language model
bAPI: application programming interface
®Multilevel verification mechanism (strategy A) represents a key innovation in handling large language model hallucinations through systematic

validation protocols. This approach ensuresreliability by implementing multiple checkpoints throughout the eval uation process (see Multimedia A ppendix
2 for detailed implementation).

dParallel evaluation architecture (strategy A) aims to improve computational efficiency while enabling comprehensive evidence-based scoring within
token constraints.

€Evidence-based scoring framework ensuresfull traceshility of artificial intelligence decision-making processes through mandatory citation requirements.
Every evaluation decision must be supported by explicit dialog evidence.

Construction of the Clinical Case Bank

Three representative cases were prepared by 5 senior clinical
experts, aligned with the national medical licensing examination
syllabus. They were chosen as the clinical conditions for the
simulation due to their relevance to the material being taught
at the time. This alignment ensured that the scenario was both
clinically pertinent and integrated with the participants ongoing
coursawork in basic sciences and clinical disciplines.

Strategy Development and Refinement

The design strategies described above were not developed in
isolation but emerged through an iterative devel opment process.
Over a 2-month period, a multidisciplinary team comprising 4
clinical instructors, 6 medical students, and 2 engineers
extensively tested the system with 3 clinical cases. Through this
collaborative process, the AMTES system itself, along with the
dialog scripts, prompts, scoring standards, and evaluation
guidelines, underwent continuous refinement based on practical
insights and user feedback. This iterative approach resulted in
a comprehensive set of evaluation rules and a well-structured
bank of few-shot examples, establishing a solid foundation for
the formal validation studies.

This bank includes 3 cases:

« Case 1. an 18-year-old mae presenting with a chief
complaint of recurrent cough. (Thisisacommon respiratory
system disease, characterized by a short course and typical
symptoms. Difficulty: simple.)
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« Case 2 a 27-year-old femae presenting with a chief
complaint of frequent urination. (This case pertains to a
common urinary system disease, complicated by patient
anxiety and a recurrent history from 6 months previous.
Difficulty: moderate.)

« Case 3 a 28-year-old mae presenting with a chief
complaint of recurrent abdominal pain involving a
gastrointestinal system disease. (This case involves a
chronic digestive system disease, notable for its recurrent
nature and the recent development of complications.
Difficulty: complex.)

Each case includes detailed scripts covering the background
introduction, patient profile, comprehensive medical history
content, and proactively asked questions. The history content
comprehensively covers the chief complaint, present illness,
past history, personal history, marital history, reproductive
history, family history, and, for female patients, menstrual
history.

Scoring items were established and points allocated based on
theclinical significance and teaching objectives of each medical
history segment, with each scoring item clearly corresponding
to asingleevaluation criterion. Thetotal scoreis 70 points, with
the current medical history accounting for 45 - 50 points. Each
scoring item is assigned different scores based on its diagnostic
value, ranging from 2 points to 0.5 points. The number of
scoring items for the 3 cases was 66 for the cough case, 59 for
the frequent urination case, and 67 for the abdominal pain case.

Study Design and Validation Framework

Participants

Between September 2024 and November 2024, 31 third-year
medical students (16 females, 15 males) from Shantou
University Medical College undergoing diagnostic training were
recruited. All participants had received theoretical training on
medical history-taking. The inclusion criteria were possession
of an electronic device and voluntary participation in the
teaching tria. All participants provided informed consent, agreed
to the use of their datafor research purposes, and were provided
with a login account with instructions on using AMTES. No
participant was excluded from the final analysis.

Validation Approach

To rigorously evaluate AMTES, we conducted validation in 3
sequential  phases, using 3 complementary strategies to
comprehensively assess the system’s performance, stability,
and generalizability. Given the pedagogical imperative to protect
students’ learning experiences, al participants interacted with
the fully processed system. Baseline and generaizability
comparisonswere conducted retrospectively using stored dialog
records, ensuring educational quality while maintaining
methodological rigor.

I mplementation Phases

Phase 1 (Weeks1 - 3)

Thrity-one students completed 3 history-taking sessions (cough
- frequent urination — abdomina pain) and received
immediate feedback from the fully-processed system.

https://mededu.jmir.org/2025/1/€73419
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Posttraining questionnaires were administered to collect student
feedback on system usability.

Phase 2

All 93 dialog records were collected, followed by 9 additional
rounds of automated assessment to completethe 10 runsrequired
for the comprehensive performance test. Subsequently, teachers
not only manually scored the 93 dialog records based on the
rubric but also evaluated the quality of the V SP’'s conversational
dialog responses. Thevalidation work was conducted by 2 senior
teachers who were independent of the case development team
in order to ensure the reliability of the evaluations.

Phase 3

We rescored the same 93 records to perform 2 main analyses.
First, a Systematic Baseline Comparison Test was conducted
across 3 versions of system: baseline, core-optimized, and fully
processed systems. Second, a Cross-Model Generalizability
Test was run using the Qwen-Max (version 20250409) model.
Since our participants are native Chinese speakers, all
interactionswith AMTESwere conducted in Chinese. The data
and screenshots were then trandated into English for
presentation.

Validation Strategies Used

Thefollowing 3 strategies were used during theimplementation
phases described above.

Comprehensive Performance Test

The fully processed system was executed 10 times per student
record to quantify evaluation stability, human-Al consistency,
and transparency.

Systematic Baseline Comparison

To quantify the contribution of our distinct optimization layers,
we conducted a baseline comparison. A 3-level approach was
necessary because several of our core strategies are technically
interdependent and could not be tested in isolation (eg, our
evidence-based scoring strategy, which requires extensive dialog
citation, isonly feasible through parallel subevaluationto avoid
exceeding the LLM’s token limits; in turn, our final
postverification stage actively uses this cited evidence to
performitsvalidation checks). Therefore, we designed the study
to compare 3 logically sequenced system versions on identical
dialog data, representing distinct stages of optimization.

« Basdine system (minimal prompting): this represents the
out-of-the-box performance of the LLM, using only a
minimal prompt and sequential processing without any of
our custom strategies.

« Core-optimized system (enhanced prompt and paralel
processing): this version incorporates our full suite of
optimization strategies that are applied during the LLM
eva uation process. It includes our entire prompt architecture
(eg, structured prompts, few-shot exampl es, evidence-based
scoring; see Multimedia Appendix 3 for the complete
integrated prompt) and the paralel subevaluation
mechanism, which function as a synergistic whole. This
stage is designed to isolate the impact of sophisticated
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prompting and system architecture, but it explicitly excludes
any postprocessing of the LLM’s output.

«  Fully processed system (with postprocessing verification):
this represents the complete, fully processed AMTES
system. It builds directly on core-optimized system by
adding thefinal, critical layer of our multilevel verification
mechanisms (ie, origina-text matching and keyword
validation) to the output generated in the previous stage.
Comparing thisto the previous system allowsusto precisely
measure the incremental gain achieved by our
postprocessing verification strategies.

Cross-Model Generalizability Test

To assess the robustness and adaptability of our evaluation
framework, we implemented the complete AMTES system
using Qwen-Max, an dternative LLM, without modifying any
prompts, evaluation strategies, or system parameters. This
testing aimed to demonstrate that our design approach could
generalize across different LLM platforms, whichiscrucial for
educational institutions that may need to adapt to various Al
technologies.

Outcome Metrics

To rigorously assess AMTES, we defined the following key
outcome metrics and their measurement criteria

Stability

This evaluates the consistency of AMTES evaluations across
10 repeated assessments. We calculated the coefficient of
variation (CV) for total scores and the counts of scoring items
where AMTES's evaluation matched human scoring
(Human-AMTES Matched Item Counts). CV vaues <10%

indicated minimal variation, 10%<CV<20% indicated moderate
variation, and CV >20% indicated significant variation.

Human-Al Consistency

This refers to the degree of agreement between evaluations by
human experts and those generated by the Al system (AMTES)
for the same student performance. We measured this consistency
a2 levels:

- Total score level: we assessed consistency by examining
the intraclass correlation coefficient (ICC) and Pearson r
between the overall scores assigned by human experts and
the Al system, using human scoring asthe benchmark. ICC
values=>0.75 were considered indicative of good reliability,
and values =0.90 were regarded as highly consistent. For
Pearsonr, valuesof 0.50 - 0.70 were considered moderate,
0.70 - 0.90 indicated strong, and >0.90 indicated very
strong.

« Itemlevel: for human-Al consistency initem-level scoring,
we quantified it using the following metrics.

Meen Differenceltems=Humen Soaring Items-Al Soaring ltems |
e edCrssen~Iddiers-MenDifeasigrsidd ers<d00%

Transparency

Transparency was defined qualitatively per report: every scoring
item had to (1) include a verbatim dialog citation with its
rationale and (2) pass both stages of automated verification
(original-text matching and keyword checks).

https://mededu.jmir.org/2025/1/€73419
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Statistical Analysis

The study datawere analyzed using SPSS 24.0 (SPSS|Inc). The
Shapiro-Wilk normality test was conducted to examine whether
the collected data followed a normal distribution. Vaues were
presented as the mean (SD) for normally distributed data. In
terms of dialog quality, the one-way ANOVA was performed
to determine differencesin the accuracy and appropriateness of
AMTES responses across the 3 case scenarios. The CV was
calculated to measure the system stability. The consistency at
the total score level was assessed using the ICC and Pearson r.
At the item level, the mean difference items and item-level
consistency were cal cul ated to eval uate the average discrepancy.
Statistical significance for al tests was set at P<.05.

Ethical Considerations

This study received ethical approval from the Ethics Committee
of Shantou University Medical College (approval number:
SUMC-2024 - 079). All procedures were conducted in
accordance with the principles of the Declaration of Helsinki
and complied with relevant Chinese laws and ingtitutional ethical
standards. Prior to participation, all subjects provided written
informed consent. Participantswerefully informed of the study's
purpose, procedures, and data handling methods and were
explicitly told that they could withdraw from the study at any
time without penalty. To ensure the privacy and confidentiality
of participants, all datawere anonymized. Personally identifiable
information was removed from the research data, and all files
were securely stored in password-protected documents
accessible only to the research team. No compensation was
provided to the participants for their involvement in this study.

Results

Participant Demographics

Therewere 16 (52%) femalesand 15 (48%) malesin this study.
All participants were enrolled in the same stage of their
diagnostics curriculum and had the experience of learning
theoretical knowledge but lacked practical experience in
simulated patient history-taking. The study achieved a 100%
completion rate, with no dropouts, and all participants were
included in the final analysis.

Analysisof AMTES s Conver sational Dialog Quality

A descriptive analysis was performed on al conversationa
dialog records between the 31 students and AMTES across 3
clinical case scenarios to assess the quality of AMTES's
conversational dialog performance. The students completed a
total of 93 history-taking sessions, generating 8606 questions
(cough scenario: 2383; frequent urination: 2818; abdominal
pain: 3405). The system’s response rate was 100%.

The accuracy rates (respond in accordance with the case script)
of AMTES's replies were as follows: 98.6% (SD 1.5%) for
cough, 99.0% (SD 1.1%) for frequent urination, and 97.9% (SD
2.2%) for abdominal pain. The proportion of contextually
appropriate responses from AMTES was consistently high:
99.74% (SD 0.67%) for cough, 99.09% (SD 1.14%) for frequent
urination, and 99.36% (SD 1.03%) for abdominal pain.
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Despite occasional participant errors, such as spelling mistakes,
AMTES demonstrated the ability to accurately interpret and
respond to the majority of these questions. Specificaly, in the
cough scenario, out of 28 erroneous questions, AMTES correctly

Liuetd

interpreted and responded to 26; in frequent urination, out of
40 erroneous questions, 32 were correctly handled; and in
abdominal pain, 12 out of 15 erroneous questionswere correctly
addressed by AMTES (Table 2).

Table. Quality analysisof Artificial Intelligence (Al)—Powered Medical History-Taking Training and Evaluation System conversational dialog.

Case Cough (n=31) Frequent urination Abdominal pain P vaue
(n=31) (n=31)

Response accuracy (%) 98.60 (1.5) 99 (1.1 97.90 (2.2) .04

mean (SD)

Number of questionsasked, 76.87 (21.22) 90.9 (21.56) 109.84 (28.83) <.001

mean (SD)

Information appropriateness  99.74 (0.67) 99.09 (1.14) 99.36 (1.03) .03

rate (%)b, mean (SD)

Number of incorrect student 28 40 15 _c

questions, n

Number of questionscorrect- 26 32 12 —

ly understood and answered

by AMTES™ € n

8Response accuracy (%) denotes the proportion of system responses evaluated as entirely correct relative to the total number of valid Al-generated

answers in that scenario.

bInformation appropriatenessrate (%) refersto the percentage of system responses deemed rel evant and contextually appropriate to the questions asked.

“Not available.

dAMTES: Artificid Intelligence—Powered Medical History-Taking Training and Evaluation System.
©The number of questions correctly understood and answered by AM TES shows how many of those erroneous questionswere still accurately interpreted

and properly answered by AMTES.

AMTES Provided Transparent and Structured
Evaluation Reports

After automatically evaluating each student’s history-taking
session, AMTES generated comprehensive feedback reports
that included the following components: doctor-patient dialog
records, total score per attempt, completeness percentages for

https://mededu.jmir.org/2025/1/€73419

each history category, an overview of scored items, and an
overview of missed items, thereby comprehensively presenting
the evaluation feedback (Figure 3). The history categories
included chief complaint, history of present illness, past medical
history, persond history, menstrual history, reproductive history,
family history, and other relevant sections.
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Figure 3. Artificia Intelligence-Powered Medical History-Taking Training and Evaluation System comprehensive feedback report showing the
structured eval uation components.

Training status: Completed

Doctor-patient dialog Total score summary and history categories completeness Scored items overview

Missed items overview Ask a question
History categories Score Totals  Scoring rate

Onset of illness (history of present illness) 7.00 7.00 100.00%
Characteristics of main symptoms and their progression (history of present illness) 13.00 17.00 76.47%

Associated symptoms (history of present illness) 9.00 15.00 60.00%

Treatment history (history of present illness) 2.00 2.00 100.00%
General condition (history of present illness) 4.00 4.00 100.00%
Past medical history 11.00 11.00 100.00%
Personal history 2.00 2.00 100.00%
Marital history 5.00 5.00 100.00%
Reproductive history 1.00 1.00 100.00%
Menstrual history 3.00 3.00 100.00%
Family history 3.00 3.00 100.00%

Overall performance: 85.71% (Score: 60.00 / Total: 70.00)

Importantly, acrossall 93 history-taking records, every feedback  scoring standard (Figure 4). System logs confirmed that all
report met the predefined transparency criteria. The scoring  displayed items passed both the original-text matching and
items displayed specific scoring criteria with clear rationales, keyword checks; items that lacked direct evidence or failed
containing verbatim dialog citations along with explicit validation were automatically removed and were never shown
explanations of how the cited text satisfied the corresponding  to students.
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Figure 4. Scoring items and rationale display showing how the system justifies scores.

Number Scoring items

Chief complaint of
abdominal pain

Precipitating factor:
2 alcohol consumption at
business dinner

Onset of present
3 abdominal pain was
one week ago

Character of pain

4 . .
described as burning

5 Pain location in upper-
middle abdomen

6 Pain intensity moderate

to severe, rated 5-6/10

Category

Onset of illness (history of
present iliness)

Onset of illness (history of
present illness)

Characteristics of main
symptoms and their
progression (history of
present illness)

Characteristics of main
symptoms and their
progression (history of
present illness)

Characteristics of main
symptoms and their
progression (history of
present illness)

Characteristics of main
symptoms and their
progression (history of
present illness)

Furthermore, AMTES implemented comprehensive logging of
the evaluation process, capturing inputs, outputs, scoring results,
and error data for each interaction. This logging facilitated
subsequent verification, analysis, and system refinement.
Therefore, the AMTES assessment process remained fully
traceable and interpretable, providing learners with clear and
reliable justifications for each awarded point.
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Points

Scoring rationale
earned

Doctor's question: "Hello Mr. Zhang, I'm Dr.
Huang. I'll be examining you today. What
seems to be bothering you?"

2 Patient’s response: "I have abdominal pain."
Scoring rationale: Doctor explicitly inquired
about the chief complaint, patient directly
reported abdominal pain.

Doctor's question: "Was there anything that
might have triggered the abdominal pain a
week ago?

Patient's response: "l had been drinking
heavily at a business dinner.”

Scoring rationale: Doctor explicitly asked
about potential triggers, patient directly
identified alcohol consumption.

Doctor's question: "When did the pain
start?"

Patient's answer: "It started a week ago."
Scoring rationale: Doctor explicitly asked
about onset timing, patient directly specified
one week ago.

Doctor's question: "Can you describe the
nature of the pain? For example, is it a
burning sensation or a sharp, cutting pain?"

2 Patient's response: "“It's a burning pain”
Scoring rationale: Doctor explicitly asked
about pain character, patient directly
identified burning sensation.

Doctor's question: "Could you specify where

exactly the pain is located?"

Patient's answer: "Pain in the upper-middle
1 abdomen."

Patient's response: Doctor explicitly asked

about pain location, patient directly

specified upper-middle abdomen.

Doctor's question: Doctor's question: "On a
pain scale of 1 to 10, where 10 represents
the most severe pain, how would you rate

2 your pain?”
Patient’s response: “5 to 6"
Scoring rationale: Doctor explicitly asked
about pain intensity, patient directly rated it
as 5-6/10.

AMTESDemonstratesHigh Stability and Repeatability
in Evaluations

The stability and reliability of the system were confirmed by
consistently low CVsat multiple levels of analysis. At the total
scorelevel, the average CVswere 0.87%, 1.12% and 1.07% for
cough, frequent urination, and abdomina pain cases,
respectively. At theitem level, the CVswere exceptionally low,
with averages of 0.55% (cough), 0.73% (frequent urination),
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and 0.67% (abdominal pain) using human evaluations as the
benchmark. At the specific history category level, the “chief
complaint” category notably achieved a CV of 0 in both the
cough and abdominal pain cases, indicating perfect consistency.
Even the categories with the highest variability, such as* present
history,” maintained very low CVs (eg, 0.65% and 0.95%).
These consistently low CV values across all levels of analysis
robustly demonstrate that AMTES provides highly stable and
reliable structured evaluations. All detailed CV data, including
ranges and category-specific breakdowns, are presented in
Multimedia Appendix 4.

Liuetd

Human-Al Consistency in Structured Evaluation

Human-Al Consistency at Total Score Level

Excellent consistency was observed between the total scores
assigned by AMTES and human evaluators. The ICC exceeded
0.923 across all 3 clinical scenarios, indicating a high level of
agreement between the Al and human experts. This strong
positive relationship was further supported by high Pearson r
(Figure 5). A detailed breakdown of the mean scores, SD, and
specific ICC values with 95% Cls for each caseis availablein
Multimedia Appendix 4.

Figure 5. Human-AMTES evaluation score correlation analysis showing strong positive correlations across all 3 cases. Al: artificia intelligence.
AMTES: Artificial Intelligence-Powered Medical History-Taking Training and Evaluation System. **P<.01.
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Human-AMTES evaluation score correlation analysis for 3 clinical cases (N=31)

Human-Al Consistency at Item Level

The primary metric for evaluating human-Al consistency isthe
item-level consistency, which directly reflects the proportion
of scoring items where AMTES and human evaluators agree.
This metric provides amore accurate assessment of evaluation
quality than total score comparisons, as it avoids the
confounding effect where errors in opposite directions might

cancel out. Acrossall 3 cases, not only wasthe mean difference
items less than 3, but the item-level consistency was also
remarkably high, exceeding 95% in all scenarios. Even in the
most complex abdominal pain case, the system maintained an
item-level consistency rate of 95.75%, demonstrating its
robustness in nuanced evaluations (Table 3). Overal, AMTES
demonstrated high consistency with human eval uations across
multiple case scenarios.

Table. Discrepancy and consistency analysis of human-AMTES? matched item counts by case groups.

Case Total items, n Mean difference items, mean (SD)  Item-level consistency, %
Cough (n=31) 66 1.89 (1.49) 97.13
Frequent urination (n=31) 59 2.06 (1.36) 96.50
Abdominal pain (n=31) 67 2.85 (1.56) 95.75

AMTES: Atrtificial Intelligence—Powered Medical History-Taking Training and Evaluation System.

Student Questionnaire

All 31 distributed questionnaires were returned (response rate:
100%). The results are displayed in Table 4. When considering
whether the AMTES is helpful, a large proportion of students
agreed (n=14, 45%) or strongly agreed (12, 39%). A significant
portion (n=14, 45%) strongly agreed, and 11 (35%) agreed with

https://mededu.jmir.org/2025/1/€73419

RenderX

the notion that the feedback and evaluation are very valuable.
Furthermore, 11 (35%) students agreed and 15 (48%) strongly
agreed that they would like to use the AMTES in the future.
When asked whether they would like to recommend this
AMTES to others, 11 (35%) agreed and 17 (55%) strongly
agreed, while only 1 (3%) student disagreed and none strongly
disagreed.
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Table. Results of student questionnaire feedback.

Liuetd

Item Students responding (n=31), n (%)
Strongly agree Agree Neutral Disagree Strongly disagree
AMTES?ishelpful as 12 (39) 14 (45) 4(13) 13 0(0)
an additional tool
Feedback and evalua- 14 (45) 11 (35) 5(16) 1(3) 0(0)
tion are very valuable
Would liketousethe 15 (48) 11 (35) 4(13) 1(3) 0(0)
AMTES in the future
Would liketorecom- 17 (55) 11 (35) 2(6) 1(3) 0(0)

mend this AMTES to
others

AMTES: Atrtificial Intelligence—Powered Medical History-Taking Training and Evaluation System.

Baseline Comparison Analysis

The baseline comparison revealed substantial and consistent
improvements across multiple dimensions, as detailed in Table

5.
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Table. Baseline comparison of system performance across implementation levels and cross-model generalizability test results using Qwen-Max.

Metric and case Basdline Core-optimized Fully-processed Relative change LLM?2 backend A (Qwen -

system system system (%) baseline- ful- Qwen-Max DeepSeek)
ly-processed

cvP (%), mean (range)

Cough (n=31) 2.09 (0 - 8.66) 1.78(0 - 5.71) 0.87 (0 - 2.78) -58.3 1.71(0- 3.93) +0.84

Frequent urination  1.68 (0 - 8.22) 3.02 (0 - 14.99) 1.12 (0 - 7.64) -333 290(1.10-6.05) +1.78

(n=31)

Abdominal pain 0.57 (0 - 4.12) 0.98 (0 - 2.96) 1.07 (0 - 3.78) +87.7 219(0.63-4.91) +1.12

(n=31)

Mean difference items, mean (SD)

Cough (n=31) 4.83(2.28) 4.60 (2.28) 1.89 (1.49) -60.9 2.24(1.14) +0.35

Frequent urination  7.92 (2.56) 4.83 (2.86) 2.06 (1.36) -74.0 2.86 (1.59) +0.80

(n=31)

Abdominal pain 9.44 (3.86) 4.05 (2.17) 2.85 (1.56) -69.8 3.71(2.18) +0.86

(n=31)

Item-level consistency, %

Cough (n=31) 92.69 93.03 97.13 +4.8 96.60 -0.53

Frequent urination  86.58 91.82 96.50 +11.5 95.14 -1.36

(n=31)

Abdominal pain 85.92 93.96 95.75 +11.5 94.45 -1.30

(n=31)

ICC® (95% CI)

Cough (n=31) 0.866 (0.785 - 0.864 (0.747 - 0.978 (0.955 - +12.9 0.970 (0.938 - -0.008
0.942) 0.931) 0.989) 0.985)

Frequent urination  0.414 (0.023 - 0.663 (0.445 - 0.923 (0.849 - +122.9 0.893 (0.792 - +0.030

(n=31) 0.702) 0.815) 0.962) 0.947)

Abdominal pain 0.500 (0.044 - 0.897 (0.803 - 0.972 (0.943 - +94.4 0.973 (0.945 - +0.001

(n=31) 0.775) 0.948) 0.986) 0.987)

Pearson r

Cough (n=31) 0.953 0.944 0.991 +4.0 0.983 -0.008

Frequent urination  0.768 0.785 0.956 +24.5 0.969 +0.013

(n=31)

Abdominal pain 0.866 0.948 0.974 +12.5 0.973 -0.001

(n=31)

8_LM: large language model.
bev: coefficients of variation.
%ICC: intraclass correlation coefficient.

Enhanced Evaluation Stability

For the cough case, CV saw a substantial 58.3% reduction,
moving from amean of 2.09% (baseline system) to 0.87% (fully
processed system), indicating minimal variation. Whilefrequent
urination also showed a 33.3% reduction (1.68% to 1.12%),
abdominal pain presented a unique trend, with CV increasing
from 0.57% (basdline system) to 1.07% (fully processed system),
suggesting increased variability in this most complex scenario
despite overall aignment gains.

https://mededu.jmir.org/2025/1/€73419
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Significant | mprovementsin Human-Al Consistency

The optimization processyiel ded remarkable gainsin human-Al
alignment across multiple metrics. For detailed data, please
refer to Table 5.

Item-L evel Consistency

Our optimization efforts yielded significant gainsin item-level
human-Al consistency. Across al cases, the mean number of
discrepant items saw reductions ranging from 60.9% to 74.0%.
This was accompanied by a notable rise in the item-level
consistency, which climbed from 85.92% - 92.69% (baseline)
to a consistently high 95.75% - 97.13% (fully processed
system). These improvements consistently showed incremental

JMIR Med Educ 2025 | vol. 11 | 73419 | p.28
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL EDUCATION

gains from the baseline system to core-optimized system and
then to the final fully processed system (Table 5).

Total Score-Level Consistency

Total score-level consistency demonstrated even more striking
improvements, with both the ICC and Pearson r showing
significant positive changes.

The ICC values experienced exceptional growth, particularly
as case difficulty increased, showcasing the optimization's
pronounced effect on alignment in more complex scenarios.
For instance, the ICC for frequent urination surged by an
impressive 122.9% (from 0.414 to 0.923), transforming from
weak to highly consistent. Similarly, abdominal pain saw a
94.4% increase (from 0.500 to 0.972), also achieving high
consistency. Even for the cough case, |CC improved by 12.9%
(from 0.866 to 0.978), reaching near-perfect consistency. The
progressive nature of these gains was clear across all versions
of the systems (Table 5).

Correlation strength, as indicated by Pearson r, consistently
improved across al cases. It moved from a strong correlation
for cough (0.953) to nearly perfect (0.991), and from moderate
and strong to very strong for frequent urination (0.768 to 0.956)
and abdominal pain (0.866 to 0.974). This further confirms a
much tighter alignment, with noticeabl e steps of improvement
from each optimization layer (Table 5).

Cross-Model Generalizability Validation

Upon replacing DeepSeek-V2.5 in the AMTES system with
Qwen-Max, the item-level consistency remained high
(94.45% - 96.60%), confirming itsexcellent reliability. Notably,
in the more challenging abdominal pain case, it demonstrated
high human-Al consistency, with a Pearson r reaching 0.9609.
Degspite a dlight increase in the average number of differing
items (18.5% - 38.8% increase, or 0.35 - 0.86 additional items)
with Qwen-Max, the absolute difference remained very small,
and the item-level consistency rate only saw a minor decrease
of 0.53% - 1.36% (Table 5). Therefore, this cross-model
validation provides strong evidence supporting the effectiveness
of the AMTES system framework.

Discussion

Principal Findings and Methodological I nnovations

In this study, we successfully developed the AMTES. Our
findings demonstrate that through our comprehensive framework
of integrated design strategies, AMTES effectively simulates
patient interactions across 3 cases of varying difficulty,
providing high-quality dialog and transparent, evidence-based
feedback. Critically, its evaluations achieved exceptional
stability (mean CV <1.20%) and high human-Al consistency
(mean ICC >0.923). This remarkable stability and consistency
demonstrate that AMTES holds significant potential as a
history-taking training tool in medical education. The use of
AMTES as a standardized patient offers a more accessible
aternativeto traditional human standardized patients, potentially
enhancing access to medical training, especialy in
resource-limited settings. The positive student reception further

https://mededu.jmir.org/2025/1/€73419
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supports its significant potential as an engaging history-taking
training tool.

The key to achieving these robust resultsliesin our systematic
approach, which extends beyond conventional prompt
optimization to encompass a multistage strategic framework.
Pre-evaluation, we implemented “Decomposition for
Standardization” to bresk down complex tasks and
“Disambiguation viaGuidelines’ to ensureinput clarity. During
the evaluation, we architected a “Parallelizing Evaluations’
mechanism. This architecture segments the scoring task into
multiple concurrent sub-queries, which not only circumvents
token limit constraints in long-context scenarios but also
significantly enhances processing throughput. Post-eval uation,
a “Multi-level Verification” mechanism was deployed to
cross-reference and validate the preliminary results, ensuring
the accuracy and reliability of the final output. It isthisorganic
integration of strategies acrossthe entire workflow that provided
the foundation for AMTES's superior performance.

Empirical Performance Resultsand Comparison With
Previous Work

High-quality doctor-patient interaction is crucia in
history-taking training. AMTES addresses the need for patient
simulation through the integration of a LLM DeepSeek-V2.5.
Through rule restrictions and multiple validations, AMTES
mitigated the “hallucination” issue commonly associated with
LLMs in complex dialogs, as well as the occurrence of
unreliable answers stemming from their strong reasoning
abilities, as noted in previous studies [12]. Our results show
that response accuracy and information appropriateness are
highest in the simplest cases among 3 different levels of
difficulty, at 98.6% (SD 1.5%) and 99.74% (SD 0.67%). These
response accuracy rates are on par with those of
ChatGPT-powered systems [22,28]. In addition, our findings
thus confirm that L L M-powered systems exhibit high accuracy
and completeness, with accuracy dightly lower for higher
difficulty compared to lower difficulty. This observation is
consistent with findings from other studies[28].

Experimental data demonstrate that the fully processed system
exhibits exceptional stability in repeated structured evaluations
across 3 distinct cases. The CV's of total scores are low-cough:
0.87% (range 0% - 2.78%); frequent urination: 1.12% (range
0% - 7.64%); abdominal pain: 1.07% (range 0% - 3.78%).
Moreover, the system showslow CVsin both item-level scoring
and across history categories. Furthermore, AMTES
demonstrates high consistency with human evaluationsin both
total scorelevel and item-level assessments, thereby confirming
the system’s significant reliability and accuracy. This accuracy
surpasses that reported for virtual patient systems in previous
studies [29-31] and, in some aspects, exceeds the human-Al
consistency of ChatGPT-4.0-driven systems [22].

Optimization Impact and Cross-M odel Gener alizability

Our baseline comparison analysis provides empirical evidence
for the value of systematic optimization in LLM-powered
educational tools. The progressiveimprovementsfrom baseline
system to fully processed system, particularly the dramatic
enhancementsin human-Al consistency for complex cases (ICC
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improving from 0.500to 0.972 for abdominal pain), demonstrate
that sophisticated prompt engineering and verification
mechanisms can transform unreliable LLM outputs into
clinically acceptable evaluations. Most notably, the differential
impact across case compl exities, with the greatest improvements
observed in the most challenging scenarios, suggests that our
optimization strategies are particularly valuable for nuanced
clinical assessments where raw LLMs struggle most. These
findings offer practical guidance for institutions, rather than
accepting out-of-the-box LLM performance, investing in
comprehensive optimization can yield evaluation tools that
approach human-level consistency.

Beyond demonstrating the importance of optimization, our
framework also exhibits remarkable cross-model adaptability.
Validation experiments with the new large-language model
Qwen-Max demonstrated that, without any prompt
modifications, our system could still provide transparent, stable,
and highly accurate structured evaluations. The success of this
experiment challenges the common assumption that
LLM-powered systems require extensive customization for each
model. This finding indicates that a well-designed evaluation
framework can achieve a level of abstraction that transcends
specific model architectures, andits cross-model generalizability
suggests great potential for medical education applications.
Educational institutions often face constraints in technology
choices due to institutional policies, regional regulations, or
resource limitations. Although our preliminary findings suggest
that the evaluation framework may not be entirely dependent
on aspecific LLM, further validation across diverse platforms
is needed to confirm this architectural flexibility. If fully
realized, such adaptability could potentially facilitate broader
adoption of Al-driven educational tools in varied educational
settings. Thesefindings suggest that aone-size-fits-all approach
to implementing LLMs in education is suboptimal; instead,
investing in a structured, multi-layered optimization and
verification framework iscritical to unlocking their full potential
as reliable assessment tools.

Educational Value and Student Feedback

Evaluation and feedback are critical in clinical education [32],
and particularly structured and procedural assessments, which
positively impact teaching and student learning [33]. Therefore,
through continuous prompt optimization, our fully processed
system not only outputs structured scores but also provides
detailed rationales for each item-level score by citing specific
diaogs from thetext, addressing the inherent opacity of scoring
reasons in traditional SP programs and existing virtual patient
systems. By providing clear evidencefor each scoring decision,
AMTES helps students understand not only what they missed
but also why specific items are important for comprehensive
history-taking. Thistransparency iscrucial for building trust in
Al-based educational tools and supporting effective learning.

Students who participated in the study provided positive
feedback. Among them, 11 (35%) students agreed and 14 (45%)
strongly agreed that the system’s evaluation functionisvaluable.
11 (35%) students agreed and 15 (48%) strongly agreed to
continue using the AMTES system for history-taking practice.
Moreover, the majority of students were willing to recommend
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the system to their peers. The strong performance of AMTES
across 3 cases of different difficulties and disease types, along
with positive user feedback, highlightsits potential adaptability
to a broader range of clinical scenarios. This matches studies
showingthat Al in health care can help devel op communication
skills, critical thinking, and clinical reasoning abilities through
good interactions and clear feedback [34]. In addition, studies
confirm that practice in virtual environments helps improve
skills and confidence in real-world clinical encounters[35,36],
suggesting that tools like AMTES can optimize educational
resources while maintaining educational quality.

AMTES Positioning and Application Prospects

Specifically, AMTES breaks through traditiona training
resource limitations and accessibility barriers by offering 24/7
learning support, personalized learning experiences, and
tail ored-structured feedback independent of standardized patient
availability. This continuous accessibility and tailored response
capability are key strengths of LLMsin medical education [37],
potentially supporting student learning efficiency and skill
acquisition. AMTES represents a significant advancement in
history-taking education, but it is designed to complement rather
than replace traditional standardized patient (SP) training. Given
the focus of AMTES on evaluating the completeness of
history-taking, it is evident that AMTES excels at providing
continuous availability for early-stage skill development,
allowing students to practice at their own pace and receive
consistent, item-level feedback throughout their learning
journey. However, the system currently lacks the ability to
simulate nonverbal communication (such as facial expressions
and body language) and cannot provide emotional understanding
and ethical guidanceinitsfeedback - el ementswhich are unique
strengths of human SP interactions. While LLMs demonstrate
decision-making capabilities, their potential as a replacement
for evidence-based professional teaching remains to be fully
explored [37]. Therefore, the successful integration of LLMs
in medical education feedback, as exemplified by AMTES, is
unlikely to lead to the complete replacement of human
educators; instead, it may facilitate a redistribution of human
effort to areas where it's most impactful [38].

Limitations and Future Prospects

We acknowledge that this study has several limitations, which,
in turn, provide clear directions for our future research.

First, from amethodological perspective, akey limitationisthe
retrospective nature of our baseline comparisons. This was a
deliberate ethical choice, grounded inthe pedagogical imperative
to protect the student learning experience. Exposing learnersto
a potentially unoptimized baseline system risked undermining
their motivation and trust, so we prioritized providing all
participants with the most reliable and educationally beneficial
version of the system. However, we acknowledge this precludes
adirect, prospective comparison of learning outcomes between
the different system versions. Future research could use a
randomized controlled trial design to provide more definitive
evidence on the educational impact of each optimization layer.

Second, the current system’s inability to simulate or interpret
nonverbal communication (eg, facial expressions and body
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language) represents a significant shortcoming in achieving the
full fidelity of patient-physician interactions. Maintaining a
warm and friendly communication style and expressing empathy
are particularly crucial for establishing effective doctor-patient
relationships. Empathy, as a core competency in doctor-patient
interactions [39], has proven highly effective in improving
patient satisfaction, treatment outcomes [40], and generating
positive health care results [41,42]. To address this gap, future
work will focus on integrating cutting-edge multimodal
technologies, such as virtua reality (VR), augmented reality
(AR), and expressive speech synthesis, to create amore holistic
and immersive simulation environment.

Finally, the scope of our validation needs to be broadened. The
current eval uation was conducted not only with alimited sample
size but was also confined to 2 prominent Chinese LLMs
(DeepSeek and Qwen). To comprehensively establish the
generalizability of our framework, a crucia future endeavor
will be 2-fold: first, to expand our validation dataset with more
diverse cases from multiple institutions; and second, to apply

Liuetd

our framework to leading international models (eg, the GPT
series[OpenAl], Claude[Anthropic]) and evaluateit in different
linguistic contexts, such as English.

By systematically addressing these limitations, we are confident
that the system has the potential to evolve into a more robust
and comprehensive next-generation tool for medical education.

Conclusion

AMTES, built on a framework of transparent and verifiable
evaluation, achieves high stability and human-Al consistency.
To our knowledge, this is the first study to systematically
evaluate an LLM-powered history-taking evaluation system
across multiple disease scenarios while providing empirical
validation of design strategies through baseline comparisons
and demonstrating cross-model generalizability. By providing
students with consistent, evidence-based feedback, AMTES is
positioned as a valuable complementary tool in medical
education, though further validation in diverse settings would
strengthen these conclusions.
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CV: coefficient of variation

I CC: intraclass correlation coefficient
LLM: large language model

SP: standardized patient

VSP: virtual standardized patient
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Abstract

Background: The medical interview remains a cornerstone of clinical training. Thereis growing interest in applying generative
artificial intelligence (Al) in medical education, including medical interview training. However, its utility in culturaly and
linguistically specific contexts, including Japanese, remains underexplored. This study investigated the utility of generative Al
for Japanese medical interview training.

Objective: This pilot study aimed to evaluate the utility of generative Al asatool for medical interview training by comparing
its performance with that of traditional face-to-face training methods using a smulated patient.

Methods: We conducted a randomized crossover pilot study involving 20 postgraduate year 1 - 2 physicians from a university
hospital. Participants were randomly allocated into 2 groups. Group A began with an Al-based station on a case involving
abdominal pain, followed by atraditional station with a standardized patient presenting chest pain. Group B followed the reverse
order, starting with the traditional station for abdomina pain and subsequently within the Al-based station for the chest pain
scenario. In the Al-based stations, participants interacted with a GPT-configured platform that simulated patient behaviors. GPTs
are customizable versions of ChatGPT adapted for specific purposes. The traditional stations involved face-to-face interviews
with asimulated patient. Both groups used identical, standardized case scenariosto ensure uniformity. Two independent eval uators,
blinded to the study conditions, assessed participants performances using 6 defined metrics: patient care and communication,
history taking, physical examination, accuracy and clarity of transcription, clinical reasoning, and patient management. A 6-point
Likert scale was used for scoring. The discrepancy between the evaluators was resolved through discussion. To ensure cultural
and linguistic authenticity, al interviews and eval uations were conducted in Japanese.

Results: Al-based stations scored lower across most categories, particularly in patient care and communication, than traditional
stations (4.48 vs 4.95; P=.009). However, Al-based stations demonstrated comparable performance in clinical reasoning, with a
nonsignificant difference (4.43 vs 4.85; P=.10).

Conclusions: The comparable performance of generative Al in clinical reasoning highlights its potential as a complementary
tool in medical interview training. One of its main advantages lies in enabling self-learning, alowing trainees to independently
practice interviews without the need for simulated patients. Nonetheless, the lower scores in patient care and communication
underline theimportance of maintaining traditional methods that capture the nuances of human interaction. These findings support
the adoption of hybrid training modelsthat combine generative Al with conventional approachesto enhance the overal effectiveness
of medical interview training in Japan.

Trial Registration: UMIN-CTR UMINOOOO53747;
https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi ?recptno=R000061336

(JMIR Med Educ 2025;11:e77332) doi:10.2196/77332
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Introduction

Medical Interview Training

Medical interview training is an essential part of medical
education, significantly influencing clinical competence, patient
satisfaction, and treatment outcomes [1-5]. Effective medical
interviewing skills are crucial not only for accurate diagnosis
but also for establishing trust and rapport among health care
professionals, patients, and their families [6-11]. For example,
several studiesreveal ed that proper diagnoses can often be made
based mainly on an effective medical interview rather than
investigations [12,13]. These findings highlighted the pivotal
role of communication skillsin clinical practice.

Barriersto Medical Interview Training

Degspite its importance, medical interview training often faces
several barriers[14]. For instance, traditional training methods
typicaly involve simulated patient interactions, which are
resource-intensive, requiring substantial time commitments
from both medical trainees and educators[15]. While simulation
training can provide valuable experiential learning [16-18], its
scalability isoften limited by resource and financial constraints
[19-22]. Consequently, medical students and junior physicians
may not receive sufficient opportunities for comprehensive and
repeated practice, limiting their development of essential
communication and clinical reasoning skills[23,24].

Potential of Artificial Intelligence for Medical
Interview Training

In response to these challenges, artificial intelligence (Al) has
emerged asapromising tool in medical education [25-28]. Until
recent breakthroughs, Al performance remained inadeguate due
totechnical limitations[29]. However, the current devel opment
of suitable technologies, including Compute Unified Device
Architecture and advanced graphics processing units, has
remarkably enhanced Al capabilities [30-33]. Al-driven
platforms offer scalable, consistent, and flexible training
experiences that alow trainees to practice extensively [34].
These tools have the potential to bridge gaps in access to
traditional training by enabling frequent, independent practice
[35,36].

Potential of Generative Al for Medical I nterview
Training

Generative Al, a subset of Al that generates human-like
responses and interactions [37,38], presents exciting potential
for medical interview training [39,40]. It often incorporates
natural language processing and large language models, which
enable it to generate and respond to human dialogue in
contextually appropriate ways [41,42]. Unlike traditional
training methods, generative Al can simulate diverse and
complex patient scenarios, providing interactive, responsive,
and personalized feedback [43]. This capability not only
enhances clinical reasoning but also facilitates self-learning,
allowing students to practice repeatedly at their convenience
[44-46].
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Prior Work

Recent studies have explored the application of generative Al
in medical interview training, particularly in the context of
Objective Structured Clinical Examinations (OSCEs). For
example, research in Japan reported that GPT-4 (legacy) based
stations outperformed traditional stations for medical students
[47]. However, direct comparison with previouswork islimited
by differencesin Al versions, participant populations, clinical
cases, and study designs. Further, earlier studies found that
previous versions of GPT occasionally generated implausible
responses [48,49]. Additionally, the comparative performance
between ChatGPT-4 (legacy) and human physicians in
conducting medical interviews revealed comparable aggregate
scores across 5 components on the 5-Likert scale (15/25 vs
15/25; P<.28) [50].

Research Gap and Aim of the Study

Despite these advances, thereisstill alack of research evaluating
the utility of generative Al tools in Japanese clinical contexts.
Cultural and linguistic nuances, including Japanese, play a
significant role in effective communication [51-53]. However,
there is alack of enough research evaluating the effectiveness
and adaptability of generative Al tools within the Japanese
clinical context. To the best of our knowledge, there is limited
research regarding the effectiveness and applicability of
generative Al-driven training toolsfor Japanese medical trainees
[47]. Therefore, this study aimed to evaluate the utility and
limitations of generative Al by comparing Al-driven medical
interview scenarios with traditional mock patient interactions
among postgraduate physicians in Japan.

Methods

Setting

Thispilot study was conducted in the Department of Diagnostic
and Generalist Medicine (genera internal medicine [GIM]) at
Dokkyo Medical University, Tochigi, Japan.

To minimize variability in participants’ medical interview skills,
a randomized crossover design was used [54]. All interviews
and eval uations were conducted in Japanese to preserve cultural
and linguistic integrity. The study consisted of 3 main
components. participant recruitment, medical interview
implementation, and interview evaluation. This study adhered
to the CONSORT-EHEALTH (Consolidated Standards of
Reporting Trials of Electronic and Mobile Health Applications
and Online Telehealth) guidelines (the CONSORT-EHEALTH
checklist is provided in Checklist 1).

Ethical Considerations

Ethics approval was obtained from the Institutional Review
Board at Dokkyo Medical University Hospital (number
R-79 - 14J). The research adhered strictly to the Helsinki
Declaration guidelines to ensure ethical conduct in human
participant research.

Participant Inclusion

Participantsincluded postgraduate year 1 - 2 physiciansrotating
through the GIM department at Dokkyo Medical University
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Hospital between April 2024 and January 2025. All eligible
physicians during this period were invited to participate.
Exclusion criteria included hearing loss or unwillingness to
attend the research. Before enrollment, all participantsreceived
detailed explanations regarding the study’s objectives,
procedures, and confidentiality protocols from researchers.
Written informed consent was obtained from each participant.

Medical Interview

Overview

Participants were randomly allocated into 2 groups through
block randomization to ensure an equal group size [55]. The
random allocation sequence was generated by an independent
researcher (KM) using Microsoft Excel. Thisensured balanced
distribution and minimized potentia confounding from
individual differences.

Each participant completed 2 types of medica interview
stations—an Al-based station using the GPTs platform and a
traditional station with face-to-face interviews with a trained
actor simulating the patient (simulated patient). The 2 stations
covered separate clinical cases: abdominal pain and chest pain.
In the Al-based stations, participants typed their questions and
responses into a laptop computer to interact with the GPTs
platform. In the traditiona stations, participants engaged in
spoken conversation with a simulated patient to conduct the
medical interview.

Participantsin Group A started with the Al-based interview on
abdominal pain, followed by the traditional interview on chest
pain. Group B began with thetraditional interview on abdominal
pain and proceeded to the Al-based interview on chest pain.

Station Structure

Both the Al-based and traditional stationsfollowed an identical
structure based on The OSCE [56]. Initially, participants
reviewed the simulated patient’s basic information for 1 minute.
The medical interview, including questions relevant to physical
examination, was conducted over 15 minutes. Physical
examinations were not actually performed in either station due
to maintaining consistency with the text-based interaction in
the Al-based station. Following the medical interview,
participants had 6 minutesto formul ate an assessment and plan.
Brief feedback and learning points were then provided for
several minutes, after which the participants moved to the next
station.

GPTs Setting

GPTs are custom versions of ChatGPT that we can adjust for
aspecific purpose without programming [57]. In this study, the
systemswere configured to simulate a patient based on detailed
case information provided in Japanese. Importantly, the GPTs
were not trained or fine-tuned in the Japanese medical language.
The systems did not provide a final diagnosis, even if
participants asked. Furthermore, if a participant inputted medical
jargon [58], GPTs responded with queries such as “What is
XXX?' to simulate redlistic patient confusion. Additional
configuration with trandlation in English detailsis provided in
Multimedia Appendix 1.

https://mededu.jmir.org/2025/1/€77332

Hirosawa et al

Simulated Patient

Thetraditional simulated patient interviewswere conducted by
researcher TH, who was trained to ensure consistency in
responses and demeanor. This approach was chosen because
the researcher serves not only as a trained actor simulating
symptoms but also as an educator providing brief feedback to
the participants at the end of each session. Identical clinical
scenarioswere used across both groups, based on awidely used
and standardized textbook for medical interview training [59].

Evaluation for Medical Interview

Traditional stations were video-recorded and transcribed.
Al-based stations used the saved text logs. For consistency in
evaluation, the transcriptions were refined to match the same
structures between stations. For example, headers labeled as
“GPTS’ in the Al-based stations were changed to “Patient.”
Self-introduction parts were removed. The corresponding text
files were also anonymized. Sample transcript with trandlation
in English isavailable in Multimedia Appendix 2.

Two experienced physicians, MK and TSa, independently
evaluated the transcripts. The evaluators did not take part in the
previous participant recruitment and medical interview
implementation. Evaluators used a structured scoring system
using a 6-point Likert scale, where 1 is inferior and 6 is
excellent. Assessments were based on six key domains: (1)
patient care and communication skills, (2) thoroughness of
history-taking, (3) physical examination proficiency, (4)
accuracy and clarity of transcription, (5) clinical reasoning
capability, and (6) overall patient management strategies. The
discrepancy was resolved through discussion. Evaluators were
blinded to interview methods and participant identity. They
assessed transcriptsin random order. The scoring systemisalso
based on The OSCE [56,60].

Statistical Analysis

Outcome

The primary outcomes were the comparison of mean scores
between Al-based and traditiona stations for the whole and
each assessment component. The secondary outcome measures
involved comparisonswithin each clinical case, abdominal pain,
and chest pain, by interview style.

Data Collection

Baseline characteristics data were collected, including years
since obtaining a degree in medicine and sex. All medical
interviews were also recorded to ensure accurate transcription:
traditional stationswere video-recorded, and Al-based stations
preserved the conversation logs as text.

Analysis

For both primary and secondary outcomes, scores on the 6-point
Likert scale were presented as mean with 95% Cls. To assess
the appropriateness of statistica tests, the normality of the paired
score differences between Al-based and traditiona stationswas
checked using the Shapiro-Wilk test [61]. As the score
differences were not normally distributed, the Mann-Whitney
U test was used as the primary method for comparing paired
outcomes between the 2 stations. A P value <.05 was considered
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statistically significant. For reference, the 95% Clsare provided
to supplement the P values (Multimedia Appendix 3 contains
detailed normality test results and detailed mean difference).

Continuous variable related to participant characteristics is
presented as medians and IQRs and compared using the
Mann-Whitney U test. The categorical variable was compared
using the Fisher exact test. All statistical analyses were
conducted using R (version 4.2.2; The R Foundation for
Statistical Computing) for MacOS X.

Figure 1. Theflow chart includes participants and allocating the groups.

Hirosawa et al

Results

Participants Characteristics

A total of 20 postgraduate physicians were enrolled (Figure 1).
Among them, 11 (56%) physicians were first year after
graduation, while 9 (45%) physicianswerein their second year.
Two (10%) female participants were included. There were no
statistical differences in participant characteristics between
group A and group B, as shownin Table 1.

Postgraduate year 1-2 physicians in a university hospital
between April 2024 and January 2025
N=20

|

Participants randomly assigned to 2 group
N=20

A
Group A
Al-based station: GPTs-based medical interview
for abdominal pain case
n=10

'

Traditional station: Traditional medical interview
for chest pain case

A A

Group B
Traditional station: Traditional medical interview
for abdominal pain case
n=10

'

Al-based station: GPTs-based medical interview
for chest pain case

n=10 n=10
Table. Participants characteristics.
Variable Group A (N=10) Group B (N=10) P value
Female, n (%) 0(0) 2 (20) 472
Years after graduation (years), me- 1.5 (1.0) 1.0(1.0) 69°
dian (IQR)
8Fisher exact test.
B ann-Whitney U test.

Evaluation Outcomes

Performance scores were compared between the Al-based and
traditional stations acrossoverall and 6 assessment domains, as

https://mededu.jmir.org/2025/1/€77332

shown in Table 2. Overall, the total score was 4.89 in the
Al-based stations compared with 5.47 in the traditional stations
(P<.001).

JMIR Med Educ 2025 | vol. 11 | 77332 | p.38
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL EDUCATION

Hirosawa et al

Table. Performance scores were compared between the artificial intelligence—based and traditional stations across overall and 6 assessment domains.

Scoring systemwith a6é-point Likert ~ Artificial intelligence-based (GPTS)  Tragitional stations (N=20%), 95% P value”
scale stations (N=20%), 95% Cl cl

Overall 4.89 (4.74 - 5.04) 5.47 (5.35 - 5.58) <.001
Patient care and communication 5.05(4.73 - 5.37) 5.45 (5.06 - 5.84) .04
History taking 4.90 (4.69 - 5.11) 5.30 (4.96 - 5.65) 04
Physical examination 5.10 (4.73 - 5.47) 5.80 (5.61 - 5.99) .001
Accuracy and clarity of transcription  4.70 (4.36 - 5.05) 5.40 (5.16 - 5.64) .002
Clinical reasoning 4.75(4.23 - 5.27) 5.30 (4.96 - 5.64) 13
Management 4.85 (4.34 - 5.36) 5.55 (5.31 - 5.79) 02

8Crossover participants with 10 chest paincasese and 10 abdominal paincasese.

bMm ann-Whitney U test.

Al-based stations yielded dlightly lower scores in patient care
and communication (mean score: 5.05 vs 5.45; P=.04). Scores
in other domains such as history taking (4.90 vs 5.30; P=.04),
physica examination (5.10 vs 5.80; P=.001), accuracy and
clarity of transcription (4.70 vs 5.40; P=.002), and management
(4.85 vs 5.55; P=.02) also trended lower for the Al-based
stations. In contrast, the domain of clinical reasoning showed
no significant difference between Al-based and traditional
stations (4.75 vs 5.30; P=.13).

Subgroup Analysis
Overview

Subgroup analyses were performed to compare the Al-based
and traditional stations for each clinical case individually. The

Table. Subgroup analysis for abdominal pain cases compared the artificial
domains.

initial case presented to participants was abdomina pain,
followed sequentially by a chest pain case.

Abdominal Pain Cases

For the abdominal pain case, as shown in Table 3, the overall
scorewas significantly lower in the Al-based stations compared
with the traditional stations (4.70 vs 5.48; P<.001). Notably,
scoresfor clinical reasoning (4.30 vs5.50; P=.01) and accuracy
and clarity of the transcript (4.40 vs 5.40; P=.009) were
significantly lower in the Al-based stations. While other domains
such as patient care and communication (5.00 vs 5.60; P=.06),
physical examination (5.20 vs 5.80; P=.06), and management
(4.60 vs 5.50; P=.07) were lower in the Al-based stations than
the traditional stations, these did not reach dtatistical
significance.

intelligence-based and traditional stations across overall and 6 assessment

Scoring systemwitha6-point Likert  Artificial intelligence-based (GPTS)

Traditional stations(N=10), 95%Cl  p yque?

scale stations (N=10), 95% CI

Overall 4.70 (4.47 - 4.93) 5.48 (5.31 - 5.66) <.001
Patient care and communication 5.00 (4.52 - 5.48) 5.50 (4.80 - 6.20) .06
History taking 4.70 (4.35 - 5.05) 5.20 (4.54 - 5.86) 17
Physical examination 5.20 (4.64 - 5.76) 5.80 (5.50 - 6.10) .06
Accuracy and clarity of transcription  4.40 (3.78 - 5.00) 5.40 (5.03 - 5.77) .009
Clinical reasoning 4.30 (3.54 - 5.06) 5.50 (5.12 - 5.88) .01
Management 4.60 (3.70 - 5.50) 5.50 (5.12 - 5.88) .07

3\ann-Whitney U test.

Chest Pain Cases

In the case of chest pain, as shown in Table 4, the Al-based
stations scored dlightly lower in overall scores compared with
thosein thetraditional stations (5.08 vs 5.45; P=.004). Physical
examination skillswere also significantly lower in the Al-based
gtations (5.00 vs 5.80; P=.009). Other domains, including patient

https://mededu.jmir.org/2025/1/€77332

care and communication (5.10 vs 5.40; P=.37), history taking
(5.10 vs 5.40; P=.14), and transcription clarity (5.00 vs 5.40;
P=.09), demonstrated trends in favor of the traditional stations
but did not reach significance. Clinical reasoning scores were
comparable between the 2 stations (5.10 vs 5.20; P=.72),
indicating consistent reasoning performance regardless of the
interview modality.
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Table . Subgroup analysis for chest pain cases compared the artificial intelligence—based and traditional stations across overall and 6 assessment

domains.
Scoring systemwith a6-point Likert  Artificial intelligence-based (GPTs)  Traditional stations(N=10), 95%Cl  p \gye?
scale stations (N=10), 95% Cl
Overall 5.08 (4.90 - 5.27) 5.45 (5.29 - 5.61) .004
Peatient care and communication 5.10 (4.57 - 5.63) 5.40 (4.90 - 5.90) 37
History taking 5.10 (4.87 - 5.33) 5.40 (5.03 - 5.77) 14
Physical examination 5.00 (4.42 - 5.58) 5.80 (5.50 - 6.10) .009
Accuracy and clarity of transcription  5.00 (4.66 - 5.34) 5.40 (5.03 - 5.77) .09
Clinical reasoning 5.20 (4.46 - 5.94) 5.10 (4.47 - 5.73) 72
Management 5.10 (4.47 - 5.73) 5.60 (5.23 - 5.97) 20

M ann-Whitney U test.

Discussion

Principal Findings

This study evaluated the utility of generative Al in medical
interview training compared with traditional simulated patient
interactions among postgraduate physicians in Japan. The
principal findingsindicate that while Al-based stations provide
aternative training methods, they generaly yield lower
performance scores across several critical domains, including
patient care and communication, thoroughness of history-taking,
physica examination proficiency, accuracy and clarity of
transcription, and management. Participants may have found it
difficult to express empathy or engage in natural conversation
through typed exchanges [62], limiting the development of
interpersonal skills in the GPT stations. While generative Al
demonstrates the potential for medical interview training, our
findings suggest that it is best suited as a supplementary tool
rather than a replacement for traditional simulated patient
interactions. The lower performance observed in domains
dependent on human interaction—such as communication and
patient care—highlights current limitations in Al’s ability to
simulate empathy and nonverbal cues. Traditional stations,
facilitated by trained actors or simulated patients, remain
essential  for developing advanced interpersonal  and
communication skills.

A key methodological aspect of this study was configuring the
GPT instance to redisticaly simulate Japanese patient
interactions. The GPTs were set up to operate entirely in
Japanese, with patient cases, and presented in culturaly
appropriate language. To enhance authenticity, the system was
instructed to respond using typical expressions. Furthermore,
the GPTs were directed to avoid using medical terminology.

Despite the limitations in interpersonal skill development,
domains such as clinical reasoning remained comparable
between GPTs and traditional stations. This finding reinforces
the potential of Al-based stationsin supporting cognitive aspects
of clinical assessment. Thisresult highlightsthe enduring value
of traditional stations, where human dynamics and emotional
responsiveness can be authentically practiced and assessed.

Subgroup analyses further demonstrated these differences across
specific clinical scenarios. Inthe abdominal pain case, Al-based

https://mededu.jmir.org/2025/1/€77332

stations scored significantly lower in overall performance,
clinical reasoning, and transcription clarity. Although other
domains like patient care and physical examination were also
lower, they did not reach statistical significance. For the chest
pain case, while the overall scores were also lower in the GPT
stations, the difference was narrower, with physical examination
skills showing the most significant disparity. Interestingly, a
sub-analysis of abdominal pain cases revealed a significantly
lower clinical reasoning score in the Al-based station. This
disparity may be attributed to differencesin case complexity or
the broader differential diagnoses associated with abdominal
presentations. In particular, abdominal pain may demand a
nuanced interpretation of information [63], suggesting that the
limited interactivity of the Al-based format may have
constrained diagnostic reasoning. This finding, which was not
apparent in the overal anaysis, provides an important
supplementary insight. It highlights the need to account for
case-specific characteristics when selecting cases or designing
Al-driven educational tools[64].

Limitations

Several limitations must be acknowledged. First, this study was
designed as afeasibility and exploratory trial and was not fully
powered or intended for formal hypothesis testing. The small
sample size (n=20) and limited number of stations constrainthe
generalizability of thefindings. The primary goal wasto assess
the feasibility and gather preliminary data to inform future
larger-scale studies. Second, the study only included
postgraduate physicians from a single institution, potentially
restricting the diversity and representativeness of the findings.
Results may not be directly applicable to undergraduate medical
students, other health care professionals, or participants from
different institutions or backgrounds. Third, the mode of
interaction differed between Al, typed input, and traditional
stations, spoken conversation, which may haveinherently biased
communication-related  scores.  Furthermore, physical
examinationswere not really performed in either station to unify
theformat for the text-based interactionin the Al-based station,
which could have influenced how this domain was assessed.
Fourth, the blinded evaluators may have been able to discern
the interview modality indirectly, potentially introducing bias.
Fifth, it should also be noted that there was some difference in
difficulty between the abdominal pain and chest pain cases.
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This discrepancy arose because it is inherently challenging to
create cases of identical complexity based on different primary
concerns. Such differences in case difficulty may have
influenced performance results and should be considered when
interpreting subgroup analyses. Finally, the study was conducted
in a single language using only one generative Al platform,
GPTs, limiting its applicability to other languages, cultural
contexts, and Al technologies.

Comparison With Prior Work

The current findings expand upon the existing literature.
Previous research on OSCEsin Japan found that GPT-4 (legacy)
based stations outperformed traditional stations of medical
students, with significantly higher total scores across 5
components of a 6-point Likert scale (28.1/31, vs 27.1/31;
P=.01) [47]. Severa differences between the previous study
and the current findings limit direct comparison. These include
variations in the Al versions used (GPT-4 legacy vs GPTSs),
participant demographics (medical students vs physicians),
cases, and study design (nonrandomized vs randomized
crossover).

Inrelation to the quality of simulated patient responses, previous
research on GPT-3.5 and GPT-4 (legacy) indicated implausible
responserates of 2% (14/842) and 0.7% (13/1894), respectively
[48,49]. In this study using the latest GPTSs, responses were
almost entirely plausible, with only one instance where GPTs
prematurely revealed full physical exam results. Thishighlights
rare but relevant issuesin prompt sensitivity.

These findings are particularly promising for resource-limited
settings or educational scenarios where access to trained
professionalsfor mock interviewsis constrained [65]. However,
caution remains warranted in extrapolating these outcomes to
real-world clinica environments.

Future Direction

To expand the utility of generative Al in medical interview
training, future research should aim for broader validation across
diverse educational settings, languages, and digital technology
platforms. Improvementsin multimodal Al and the integration
of voice-based interactions may enhance the realism and
interpersonal aspects of Al simulations [66]. Multimodal Al
processes and understands information from different types of
data, including text, images, audio, video, and sometimes even
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sensor data [67]. Future investigations should also explore the
longitudinal impacts of repeated practice with Al-driven tools
to better evaluate the long-term benefits [68]. Additionally,
studies comparing hybrid models—such as Al-assisted
interviews followed by human debriefing—may offer insights
into how best to combine the strengths of both methods[69,70].

Conclusions

This study provides important proof-of-concept evidence for
the use of generative Al, specifically GPTs, asatool in medical
interview training among postgraduate physicians. While the
Al-based (GPT) station underperformed compared with
traditional stations across several domains, including patient
care and communication, the performancein clinical reasoning
was comparable. These results suggested that generative Al
could serve as a supplemental tool for medical education in
cognitive components of clinical assessment.

The practical implications for medical education areimportant.
Generative Al can enable self-directed, scalable, and accessible
medical interview practice. However, the current findings also
reinforce the value of human interaction in developing nuanced
communication and empathy. Therefore, the adoption of hybrid
educational modelsmay be particularly effective. Thisapproach
isthe unique strength of combining Al and human educatorsin
simulation-based learning environments.

Nevertheless, these conclusions are preliminary. The small
sample size, single-institution setting, and limited number of
clinical cases restrict the generalizability of our findings. The
crossover design, differences in case complexity, modality of
interaction (typed vs spoken), and the use of a single Al
language model and language all further limit broad application.
These feasibility findings warrant cautious interpretation and
highlight the need for larger, multicenter, and longitudinal
studies to establish comparative effectiveness and assess the
long-term educational impact of Al-assisted training.

Future research should explore the integration of multimodal
Al systems to enhance the realism and authenticity of patient
simulations. Additionally, multipleinstitutional collaborations,
broader participant demographics, and studiesin other languages
and contexts are needed to determine the true potential and
limitations of Al in medical education.
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Abstract

Background: Inrecent years, large language models (LLMs) have shown aremarkable ability to generate human-like text. One
potential application of this capability is using LLMs to simulate clients in a mental health context. This research presents the
development and evaluation of Client101, a web conversational platform featuring LLM-driven chatbots designed to simulate
mental health clients.

Objective: We aim to develop and test a web-based conversational psychotherapy training tool designed to closely resemble
clients with mental health issues.

Methods: We used GPT-4 and prompt engineering techniques to develop chatbots that simulate realistic client conversations.
Two chatbots were created based on clinical vignette cases: one representing a person with depression and the other, a person
with generalized anxiety disorder. A total of 16 mental health professionals were instructed to conduct single sessions with the
chatbots using a cognitive behavioral therapy framework; atotal of 15 sessionswith the anxiety chatbot and 14 with the depression
chatbot were compl eted. After each session, participants completed a 19-question survey ng the chatbot’s ability to smulate
the mental health condition and its potential as a training tool. Additionally, we used the LIWC (Linguistic Inquiry and Word
Count) tool to analyze the psycholinguistic features of the chatbot conversations related to anxiety and depression. These features
were compared to those in a set of webchat psychotherapy sessions with human clients—42 sessions related to anxiety and 47
related to depression—using an independent samplest test.

Results: Participants survey responses were predominantly positive regarding the chatbots' realism and portraya of mental
health conditions. For instance, 93% (14/15) considered that the chatbot provided a coherent and convincing narrative typical of
someone with an anxiety condition. The statistical analysis of LIWC psycholinguistic features revealed significant differences
between chatbot and human therapy transcriptsfor 3 of 8 anxiety-related features: negations (t55=4.03, P=.001), family (t;5=—8.62,

P=.001), and negative emotions (t;s=—3.91, P=.002). The remaining 5 features—sadness, personal pronouns, present focus, social,
and anger—did not show significant differences. For depression-related features, 4 of 9 showed significant differences. negative
emotions (tgg=3.84, P=.003), feeling (t5p=—6.40, P<.001), health (tggc=4.13, P=.001), and ilIness (t55=—5.52, P<.001). The other
5 features—sadness, anxiety, mental, first-person pronouns, and discrepancy—did not show statistically significant differences.

Conclusions:  This research underscores both the strengths and limitations of using GPT-4-powered chatbots as tools for
psychotherapy training. Participant feedback suggests that the chatbots effectively portray mental health conditions and are
generally perceived as valuable training aids. However, differences in specific psycholinguistic features suggest targeted areas
for enhancement, helping refine Client101's effectiveness as atool for training mental health professionals.

(JMIR Med Educ 2025;11:e68056) doi:10.2196/68056

KEYWORDS
medical education; mental health; chatbots; psychotherapy training; virtual client

; psychologists[1]. Optimal psychotherapy training ideally needs
Introduction abundant practice opportunities coupled with immediate
Background performance-based feedback [2]. However, both training

methods, working with clients or using role-play, present
significant challenges. The use of clientsraises ethical concerns
regarding patient welfare, particularly when inexperienced
psychotherapists provide treatment, which can result inrisksto

Psychotherapy training requires a comprehensive approach,
encompassing practical skill development through supervised
sessionswith clientsor peer role-playing, along withtheanalysis
and discussion of therapy sessions from experienced
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vulnerable individuals receiving suboptimal care. However,
roleplay scenarios, while more controlled, are
resource-intensive. They face challenges such asfinding suitable
peers for role-playing and ensuring a consistent learning
experience due to varying skill levels among participants.

The integration of natural language processing (NLP) in the
field of mental health training offers potential solutions to
challenges in client availability. Chatbots leveraging large
language models (LLMs) can simulate human dialogue and
offer a structured framework for task-oriented interactions [3].
Their evolving conversational abilities allow them to actively
engage in dial ogues, making them a promising educational tool
infields such as health care and medical education [4]. The use
of chatbots as virtual patients in mental health training holds
significant potential. Through prompt engineering techniques,
chatbots can be configured to simulate diverse mental health
conditions and behaviors. This capability makesthem valuable
assets for psychotherapy training in a controlled environment,
thereby mitigating the risks associated with using rea clients
for training purposes. Additionally, chatbots offer the advantage
of being readily accessible platforms for simulated therapeutic
interactions at any time.

In this study, we present Client101, aweb-based conversational
platform that uses LLMs as chatbots to simulate the behavior
of mental health clients. We used 2 distinct prompt
configurations to generate 2 types of virtual clients: one
simulating the experience of depression and the other
representing individuals coping with generalized anxiety
disorder (GAD). A total of 16 individuals with a background
in psychotherapy (ie, clinical psychologists and qualified
counselors) used the platform to evaluate it. The participant
therapists were tasked with conducting single sessions with
each of the 2 chatbots before completing aquestionnaire. While
no specific instructions were given, it was suggested to the
participants that they use something like a single-session
integrated cognitive behavioral therapy (SSI-CBT) approach

[5].

Furthermore, we used the LIWC-22 (Linguistic Inquiry Word
Count) software to measure psycholinguistic features of the
ons. This enabled usto examine whether the chatbots used
linguistic indicators commonly associated with depression and
GAD. Additionally, we conducted a comparative analysis
between the psycholinguistic features of the sessions conducted
with the virtual clients and those from single webchat therapy
sessions typical of an online Australian mental health support
service.

Study Aim

Thisstudy pursued 2 primary objectives. Firgt, it aimed to assess
psychotherapists’ perceptions of the chatbot’s ability to simulate
client characteristics during sessions, using the questionnaire
completed by the therapists. Second, it sought to assess the
degree of divergence between synthetic and organic
psychotherapy transcripts by identifying any statistically
significant differences in specific psycholinguistic indicators.
These 2 aims guided our investigation of thefollowing research
guestions: (1) How well does Client101 simulate the language
of psychotherapy clients? (2) How effective is Client101 as an
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educational tool for training therapists? and (3) What are
Client101’s limitations, and how can they be addressed?

Thus, our main contributions in this paper are as follows: (1)
we built Client101, a web-based conversational platform that
uses LLMsaschatbotsto simulate the behavior of mental health
clients; (2) we present a prompt engineering methodology to
generate and evaluate counseling transcripts for simulated
psychotherapy client interactions, (3) we performed a
psycholinguistic analysis comparing depression and anxiety
dimensions between therapy transcripts obtained froman online
counseling service and therapy sessions using Client101; and
(4) we present results from a preliminary questionnaire that
gathered the perceptions and feedback of participant therapists
viaaset of Likert and open-ended items.

Related Work

Conversational Agentsfor Mental Health

The connection between chatbots and psychology can betraced
to the creation of ELIZA, developed by computer scientist
Weizenbaum [6] in the mid-1960s. The ELIZA system used
reassembly and decomposition rules to act as a Rogerian
psychotherapist (ie, based on the approach of humanistic
psychology pioneer Carl Rogers). However, ELIZA was not
intended to be atherapy chatbot. Rather, Weizenbaum devel oped
ELIZA to explore interactions between humans and chatbots
and to ultimately demonstrate what he saw as the superficiality
of such interactions. Itisin recent years, partly due to advances
in NLP and partly due to the rise of digital mental health, that
we have seen the emergence of conversational agents as mental
health interventions [3].

Contrary to the prevalence of chatbots that serve as virtual
therapists, thereis scant lineage of chatbotsthat instead simulate
an individual with mental health issues. In 1972, psychiatrist
Colby et a [7] developed PARRY, a chatbot that simulated a
person with paranoid schizophrenia. However, PARRY was
not intended to serve as a therapy training tool. Rather, its
purpose was to model and understand the thought processes
and verbal expressions of paranoia, aiming to aid in psychiatric
research and study. Since PARRY, little work has been done
on the idea of developing chatbots to simulate individualswith
mental health issues, particularly for training purposes.

ELIZA, PARRY, and many of the currently available chatbots
that rely on predefined rules undermine their potential for
therapeutic services by operating through simplistic
pattern-matching mechanisms [8]. These systems generate
responses by rigidly mapping user inputs to predetermined
templates, which result in repetitive, noncontextual interactions
that fail to capture the nuanced, dynamic nature of human
communication [9]. Unlike humanswho canintuitively interpret
emotional subtexts, recognize implicit meanings, and respond
with genuine empathy, these chatbots provide surface-level,
algorithmic outputs that lack the depth, adaptability, and
emoational intelligencecritical for meaningful dialogue[9]. More
recent NL P models, such asrecurrent neura networkswith long
short-term memory (LSTM), generate text by learning from a
large corpus of examples rather than relying on hand-crafted
rules [10]. Tanana et a [2] developed ClientBot, a web-based
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system that uses machine-based feedback for training counseling
skills. The underlying NLP component of ClientBot was an
LSTM recurrent neural network model trained on 2 distinct
datasets. Thefirst dataset consisted of avast collection of movie
and TV show subtitles, encompassing 1689 bitexts and totaling
2.6 billion sentences across 60 languages [11]. The second
dataset included psychotherapy transcripts published by
Alexander Street Press [12]. Since ClientBot was trained on a
corpus of movie transcripts, its responses were sometimes
contextually incoherent and often lacked the depth and length
typical of aclient in a psychotherapy session. As observed by
Zhang et a [13], the lack of coherency and consistency in
conversational agents results in an unsatisfying overall
experience for human users.

Conversational agents struggleto keep an engaging conversation
due to alack of consistent personality [11] and the absence of
an explicit long-term memory [10]. To addressthisissue, Zhang
et a [13] developed the dataset “persona-chat dataset,” a
collection of 164,356 written utterances between crowd workers
who were asked to communicate with each other while playing
the part of a specific persona. While training LSTM models
with this dataset enhances engagement during conversations
between humans and chatbots, it was not designed to address
the challenge of simulating arealistic mental health client.

Transformer-based generative models leverage self-attention
mechanismsto capture long-range dependencies and contextual
relationships, allowing them to produce coherent responses[14].
As a result, these models have been used as chatbots for
educational applications, including medical training via
simulated patient interactions[15]. Efficient prompt engineering,
the process of iterating a generative artificial intelligence (Al)
prompt to improve its effectiveness, plays a crucial role in
creating aconversational agent that accurately mimicsapatient.
In the study by Stapleton et al [16], prompts were designed for
GPT-3.5 Turbo to simulate a patient experiencing suicidal
ideation. To achieve realistic conversations, their prompts built
a persona detailing the patient’s age, past experiences, and
intrusive thoughts. When designing the prompts, the authors
did not rely on licensed psychologists or psychiatrists, but
instead they used the lived experiences of suicidal people as a
reference. However, Demasi et al [17] stress the importance of
engaging specialized users, such asmental health professionals,
in system development and evaluation to achieve successful
results. Hence, to achieve engaging and realistic conversations
that accurately mimic mental health patients, we collaborated
with mental health professionals in designing the prompts and
incorporated a memory system into the chatbot to ensure
cohesive and consistent interactions over long conversations.

Psycholinguistic Features

A crucial limitation of previous conversational agentsfor mental
health is the lack of validation and grounding in psychological
theory for the outputs they generate. Although NLP models
have demonstrated remarkable performance in text generation,
their effectiveness in mental health applications remains
uncertain dueto insufficient grounding in psychol ogical theory
[18]. To address this gap, our research involved evaluating the
quality of the model-generated responses with the assistance of
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licensed psychologists. Additionally, we used the LIWC-22
[19], atool designed to assess various psychosocial constructs
within text, to evaluate if psycholinguistic features associated
with depression and anxiety were present in the sessions
generated by the chatbots. A statistical analysiswas conducted
to observeif thereisastatistically significant difference between
the psycholinguistic features of the Client101 simulated ons
and single webchat therapy sessions.

LIWC text analysis software has been used to identify linguistic
markers of depression and anxiety. Eichstaedt et al [20] used
language from Facebook posts of consenting individuals to
predict depression recorded in electronic medical records,
specifically major depression (1CD [International Classification
of Diseases] codes 296.2) and depressive disorder (ICD codes
311). Using different linguistic markers, they could identify
depressed patientswith fair accuracy: areaunder the curve=0.69,
approximately matching the accuracy of screening surveys
benchmarked against medical records. The LIWC negative
emotions, feel, sadness, anxiety, hedlth, illness, mental,
first-person singular, and discrepancy dictionaries were
significantly associated with future depression