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Abstract
Background: Recent studies, including those by the National Board of Medical Examiners, have highlighted the remarkable
capabilities of recent large language models (LLMs) such as ChatGPT in passing the United States Medical Licensing
Examination (USMLE). However, there is a gap in detailed analysis of LLM performance in specific medical content areas,
thus limiting an assessment of their potential utility in medical education.
Objective: This study aimed to assess and compare the accuracy of successive ChatGPT versions (GPT-3.5, GPT-4, and
GPT-4 Omni) in USMLE disciplines, clinical clerkships, and the clinical skills of diagnostics and management.
Methods: This study used 750 clinical vignette-based multiple-choice questions to characterize the performance of successive
ChatGPT versions (ChatGPT 3.5 [GPT-3.5], ChatGPT 4 [GPT-4], and ChatGPT 4 Omni [GPT-4o]) across USMLE disci-
plines, clinical clerkships, and in clinical skills (diagnostics and management). Accuracy was assessed using a standardized
protocol, with statistical analyses conducted to compare the models’ performances.
Results: GPT-4o achieved the highest accuracy across 750 multiple-choice questions at 90.4%, outperforming GPT-4 and
GPT-3.5, which scored 81.1% and 60.0%, respectively. GPT-4o’s highest performances were in social sciences (95.5%),
behavioral and neuroscience (94.2%), and pharmacology (93.2%). In clinical skills, GPT-4o’s diagnostic accuracy was
92.7% and management accuracy was 88.8%, significantly higher than its predecessors. Notably, both GPT-4o and GPT-4
significantly outperformed the medical student average accuracy of 59.3% (95% CI 58.3‐60.3).
Conclusions: GPT-4o’s performance in USMLE disciplines, clinical clerkships, and clinical skills indicates substantial
improvements over its predecessors, suggesting significant potential for the use of this technology as an educational aid for
medical students. These findings underscore the need for careful consideration when integrating LLMs into medical education,
emphasizing the importance of structured curricula to guide their appropriate use and the need for ongoing critical analyses to
ensure their reliability and effectiveness.
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Introduction
Overview
Recent studies have demonstrated the promise of large
language models (LLMs) such as ChatGPT, Google Gemini,
and Claude in various medical applications, with studies
showing passing United States Medical Licensing Examina-
tion (USMLE) exam scores and evaluating LLMs’ ability
to assist with clinical documentation and provide medical
advice [1-4]. The potential of these models to revolutionize
medicine and medical education underscores the need for a
thorough evaluation of their performance [5,6]. Before LLMs
can be widely adopted in health care and medical education,
it is crucial to assess their proficiency in both preclinical
disciplines (eg, anatomy, physiology, and microbiology) and
clinical disciplines (eg, diagnostics and treatment recommen-
dations).
The Role of LLMs in Medical Education
In the context of undergraduate medical education, LLMs
have demonstrated preliminary potential in text-based
applications in generating practice questions, fostering
case-based learning, creating study guides, and providing
rapid answers to relevant questions [7-9]. Although models
such as GPT-3.5 offer the potential for a more personal-
ized learning experience, they also have limitations, such as
training cut-off dates, limited image capabilities, potential
inaccuracies, and a lack of user training [10-12]. Medical
students often use third-party resources to supplement their
studies, with evidence suggesting that such utilization is
associated with higher USMLE scores [13,14]. The diverse
applications and benefits of LLMs contribute to a com-
prehensive approach to fostering self-directed learning for
lifelong learners in medicine [12,15]. While accuracy remains
a limitation of LLMs as clinical tools for students and
clinicians, recent studies indicate a trend toward increased
reliability and accuracy, a crucial consideration for their use
in medical education and health care [16-18].
Previous Assessments of LLM Accuracy
in Medical Contexts
Comparing multiple studies on the accuracy of LLMs in
the context of medicine, such as ChatGPT, is challenging
due to variations in question sets, exclusion criteria, and
the specific models assessed, though some parallels can
be drawn. Most studies have evaluated LLMs based on
their ability to correctly answer multiple-choice questions
(MCQs) from retired National Board of Medical Exami-
ners’ (NBME) content or third-party question banks such as
Amboss [19-22]. Some studies suggest LLMs perform better
on USMLE sample items compared to third-party question
banks [20], and newer versions of LLMs such as ChatGPT 4
(GPT-4) outperform their earlier counterparts [22]. Evalua-
tions of ChatGPT 3.0 found it was able to accurately answer

USMLE sample items 36.7% of the time [23], improving to
more than 50% correct in a matter of months [21]. Perform-
ance also appears to depend on the specific skills tested and
the language used in training [24,25]. Further illustrating this
in a study by the NBME, ChatGPT scored a passing score
in USMLE Step exams across multiple attempts, with one
exception in a USMLE Step 3 exam attempt [26]. ChatGPT
3.5 (GPT-3.5) was found to answer 63.06% of Step 1 and
70.0% of Step 2 CK questions correctly [26]. Most recent
studies showcase GPT-4 achieving as high as 86% accuracy
on USMLE Step 1 questions, highlighting its near readiness
for investigation in improving learning for medical students in
preclinical education.
Aim of the Study
While previous research has primarily explored the ability
of these models to pass medical licensing exams, this study
takes a medical disciplinary approach to assess and com-
pare the accuracy of ChatGPT 3.5 (GPT-3.5), ChatGPT
4 (GPT-4), and ChatGPT 4 Omni (GPT-4o) specifically
in the context of the USMLE preclinical medical disci-
plines and clinical clerkships. These historically recognized
USMLE (and NBME [27]) preclinical medical disciplines,
including anatomy, pathology, and biochemistry, provide a
valuable empirical framework to understand the strengths and
weaknesses of language models in medical disciplines and
clinical skills.

Methods
LLMs: The ChatGPT Series
In our study, we used the ChatGPT series, which compri-
ses sophisticated algorithms designed to simulate human-like
responses to textual inputs. These models generate respon-
ses by analyzing input text and predicting output based on
learned statistical patterns. ChatGPT 3.5 (GPT-3.5) is the
earliest model used in this study and is currently accessible
to the public through free subscription [28]. ChatGPT 4
(GPT-4), introduced in March 22, 2023 and available through
a monthly paid subscription, was included for comparative
analysis [29]. Notably, we included the latest ChatGPT
model, ChatGPT 4 Omni (GPT-4o), which was released on
May 13, 2024 [30].
Clinical Vignette-Based Assessment in
USMLE Disciplines and Clinical Clerkship
In total, 750 clinical vignette-style MCQs were sourced
from various question banks provided by medical schools to
medical students (Amboss, UWorld, TrueLearn). To prevent
model “learning” effects and avoid potential bias from prior
usage of publicly available question sets, we selected these
MCQs from these sources, which are not publicly accessible.
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The 750 MCQs were divided evenly, with 375 covering
USMLE Step 1 (“Preclinical”) content and 375 covering
USMLE Step 2 (“Clinical”). We applied specific criteria
to ensure the relevance and rigor of the questions. Ques-
tions involving imaging findings (such as X-rays, MRIs,
or ultrasounds), histologic, and gross exam findings were
excluded from the study, and an additional clinical vignette
was generated in its place. To ensure diversity and reduce
bias, questions were sourced by generating random question
sessions, with careful attention to avoid duplication of any
questions in the final set.

For each MCQ, we noted whether the vignette per-
tained to preclinical or clinical subject matter, identified the
specific USMLE preclinical discipline or clinical clerkship
content assessed, and the percentage of medical students
who answered correctly, as detailed by the question bank
resources. Using the percentage of medical students who
correctly answered each question, we assigned a difficulty
tier to each question on a scale from 1 (most difficult) to 5
(easiest) (1: 0%‐19.9%; 2: 20.0%‐39.9%; 3: 40.0%‐59.9%; 4:
60.0%‐79.9%; 5: 80.0%‐100%).
Protocol for Assessing Accuracy of
ChatGPT
The assessment of the language models was conducted from
May 20 to May 26, 2024. The assessment of response
accuracy entailed entering the MCQs into a ChatGPT chat
session using a standardized protocol based on methodologies
similar to those employed in multiple-choice-based language
model assessments [16,17,19,26,31-35]. This protocol for
eliciting a response from ChatGPT was as follows: “Answer
the following question and provide an explanation for your
answer choice.” Data procured from ChatGPT included its
selected response, the rationale for its choice, and whether the
response was correct (“accurate” or “inaccurate”). Responses

were deemed correct if ChatGPT chose the correct multi-
ple-choice answer. To prevent memory retention bias, each
vignette was processed in a new chat session.
Assessment in Clinical Domains of
Diagnostics and Management
Further subcategorization of the 750 MCQs was made based
on their question stem. Question stems assessing the most
likely diagnosis (n=168, “Diagnostics”) or the next best step
in treatment (n=178, “Management”) were noted and used for
further comparison to assess accuracy in the clinical skills of
diagnostics and management.
Statistical Analysis
IBM SPSS Statistics 29.0 (IBM Corporation) was used for
statistical analyses, with a significance threshold of P<.05.
Statistical tests included chi-squared for categorical compar-
isons, and binary logistic regression when assessing the
influence of question difficulty on language model correct
response rate.
Ethical Considerations
The study did not involve patient data or human subjects
and, as such, was not subject to institutional review board
approval.

Results
Overall, GPT-4o achieved an overall correct response rate of
90.4%, while GPT-4 had 81.1%, both significantly outper-
forming GPT-3.5’s correct response rate of 60.0% (Table 1
and Figure 1). The average accuracy of medical students was
59.3% (95% CI 58.3‐60.3).

Table 1. Response accuracy of the ChatGPT series across USMLEa preclinical disciplines and clinical clerkships. Some questions (n=139) could not
be categorized due to not having or having multiple categories from sources.
Question category or
subcategory Questions, N Language model performance, n (%) correct

Medical student average,
percent correct (95% CI)

GPTb-3.5 GPT-4 GPT-4o
Overall
  All questions 750 450 (60.6) 608 (81.1) 678 (90.4) 59.3 (58.3‐60.3)
Preclinical assessment questions
  All questions 375 229 (61.1) 301 (80.3) 337 (89.9) 57.7 (56.3‐59.1)
   USMLE disciplines
    Anatomy, histology, and

embryology
36 21 (58.3) 31 (86.1) 31 (86.1) 50.7 (45.9‐55.5)

    Behavioral and
neuroscience

52 40 (76.9) 45 (86.5) 49 (94.2) 53.3 (47.8‐58.8)

    Biochemistry 35 20 (57.1) 28 (80.0) 31 (88.6) 65.1 (57.8‐72.3)
    Biostatistics 21 12 (57.1) 18 (85.7) 17 (81.0) 57.1 (52.7‐61.6)
    Immunology 28 19 (67.9) 23 (82.1) 26 (92.9) 53.5 (48.1‐58.9)
    Microbiology 39 20 (51.3) 30 (76.9) 36 (92.3) 57.7 (52.0‐63.2)
    Pathology 29 17 (58.6) 20 (69.0) 24 (82.8) 64.4 (60.9‐67.8)
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Question category or
subcategory Questions, N Language model performance, n (%) correct

Medical student average,
percent correct (95% CI)

GPTb-3.5 GPT-4 GPT-4o
    Pharmacology 44 27 (61.3) 37 (84.1) 41 (93.2) 57.9 (53.8‐62.0)
    Physiology 24 13 (54.2) 12 (50.0) 20 (83.3) 51.9 (46.1‐57.8)
    Social sciences 22 13 (59.1) 18 (81.8) 21 (95.5) 66.7 (61.5‐72.1)
Clinical assessment questions
  All questions 375 221 (58.9) 307 (81.9) 341 (90.9) 61.0 (59.5‐62.5)
   Clinical clerkships
    Family medicine 34 20 (59.0) 26 (76.5) 34 (100.0) 54.0 (48.4‐59.5)
    Internal medicine 22 15 (68.2) 21 (95.5) 22 (100.0) 69.2 (65.1‐73.2)
    Neurology 59 41 (69.5) 50 (84.7) 55 (93.2) 61.2 (57.2‐65.3)
    Obstetrics and

gynecology
45 24 (53.3) 40 (88.9) 41 (91.1) 61.2 (54.9‐67.6)

    Pediatrics 42 28 (66.7) 32 (76.2) 37 (88.1) 58.3 (54.2‐62.5)
    Psychiatry 43 25 (58.1) 35 (81.4) 40 (93.0) 54.2 (48.5‐59.8)
    Surgery 36 20 (55.6) 30 (83.3) 31 (86.1) 62.3 (57.4‐67.1)

aUSMLE: United States Medical Licensing Examination.
bGPT: Generative Pre-trained Transformer.

Figure 1. Analysis of ChatGPT models’ and medical students’ performance on USMLE questions. This figure displays the comparative accuracies
of ChatGPT 3.5 (GPT-3.5), ChatGPT 4 (GPT-4), ChatGPT 4 Omni (GPT-4o), and medical students in answering a set of 750 USMLE-style
questions. The overall accuracy, preclinical accuracy, and clinical accuracy are shown. Asterisks (*) denote statistically significant differences
(P<.05), highlighting the advancements in newer models of the GPT series. The number of questions is indicated for each category: n=750 for overall
accuracy, n=375 for preclinical accuracy, and n=375 for clinical accuracy. GPT: Generative Pre-trained Transformer; USMLE: United States Medical
Licensing Examination.

USMLE Discipline Response Accuracies
In total, 375 MCQs designed to assess preclinical content
as categorized by USMLE disciplines were administered to
GPT-3.5, GPT-4, and GPT-4o. GPT-3.5’s highest correct
response percentages were in behavioral and neuroscience
(76.9%), immunology (67.9%), and pharmacology (61.3%).
Conversely, the lowest correct response percentages were
observed in physiology (54.2%) and microbiology (51.3%).
For GPT-4, the highest correct response percentages were
observed in behavioral and neuroscience (86.5%), anat-
omy, histology, and embryology (86.1%), and pharmacol-
ogy (84.1%). The lowest correct response percentages for
GPT-4 were in physiology (50.0%) and pathology (69.0%).

GPT-4o demonstrated the highest correct response percen-
tages in social sciences (95.5%), behavioral and neuroscience
(94.2%), and pharmacology (93.2%). The lowest correct
response percentages for GPT-4o were in pathology (82.8%)
and biostatistics and epidemiology (81.0%).
Response Accuracies in Clinical
Clerkships
In total, 375 MCQs assessing clinical clerkship content were
administered to GPT-3.5, GPT-4, and GPT-4o. GPT-3.5
exhibited its highest response percentages in neurology
(69.5%) and internal medicine (68.2%), while the lowest
percentage response accuracies were observed in obstetrics
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and gynecology (53.3%) and surgery (55.6%). In compari-
son, GPT-4 achieved higher accuracy across all clerkships,
with notable performances in internal medicine (95.5%)
and obstetrics and gynecology (88.9%). Similarly, GPT-4o
demonstrated improved performance, achieving correct
response rates of 93.2% in neurology and 93.0% in psychia-
try, as well as 100.0% in family medicine and 100.0% in
internal medicine. The lowest accuracies for GPT-4o were
still significantly high, with obstetrics and gynecology at
91.1% and surgery at 86.1%. Overall, GPT-4 and GPT-4o
showed substantial improvements over GPT-3.5 in all clinical
clerkship categories.

Vignette Difficulty and Comparisons
Based on Respondent Performance
GPT-3.5 (Exp(B)=1.033, SE=0.005, P<.001), GPT-4
(Exp(B)=1.039, SE=0.006, P<.001), and GPT-4o
(Exp(B)=1.043, SE=0.008, P<.001) demonstrated a higher
likelihood of responding incorrectly to vignettes that were
more challenging for medical student respondents (Figure 2).

Figure 2. Influence of question difficulty on response accuracy compared to medical student performance. This figure illustrates the effect of clinical
vignette difficulty on the response accuracy of ChatGPT 3.5 (GPT-3.5), ChatGPT 4 (GPT-4), and ChatGPT 4 Omni (GPT-4o) in comparison to
medical students. The bar graph represents the percentage of correct responses across different tiers of difficulty, ranging from tier 1 (most difficult)
to tier 5 (easiest). The number of questions for each difficulty tier is n=10 for tier 1, n=89 for tier 2, n=263 for tier 3, n=302 for tier 4, and n=81 for
tier 5.

Performance of ChatGPT in Diagnostics
and Management
A total of 342 MCQs were secondarily categorized from the
750 MCQs based on question stems: 164 assessing “diagnos-
tics” and 178 assessing “management.” Overall, the respec-
tive percent correct response accuracies of GPT-3.5, GPT-4,
and GPT-4o in these questions were 70.5% (241/342), 81.9%

(280/342), and 88.8% (304/342) (Figure 3). In the diag-
nostics category, GPT-4 and GPT-4o demonstrated higher
correct response percentages compared to GPT-3.5 (83.5%
and 92.7% vs 65.2%). Similarly, in the management category,
GPT-4 and GPT-4o outperformed GPT-3.5 (77.0% and
88.8% vs 57.9%). Notably, GPT-4o significantly outper-
formed GPT-4 in both diagnostics and management.
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Figure 3. Performance of ChatGPT models in diagnostics and management compared to medical students. This figure compares the performance
of ChatGPT 3.5 (GPT-3.5), ChatGPT 4 (GPT-4), and ChatGPT 4 Omni (GPT-4o) in the clinical domains of diagnostics and management. The
bar graph shows the percentage of correct responses for each model and medical students in the diagnosis (n=164) and management (n=178)
categories. GPT-4o exhibits the highest accuracy in both categories, followed by GPT-4, with GPT-3.5 showing the lowest performance. Asterisks (*)
denote statistically significant differences (P<.05), emphasizing the advancements in newer models of the GPT series. GPT: Generative Pre-trained
Transformer.

Discussion
Overview
This study evaluated ChatGPT versions for their accuracy
in USMLE preclinical disciplines, clinical clerkships, and
clinical skills categories of diagnostics and management. The
aim was to assess the reliability of using LLMs in medi-
cal education by examining their accuracy across various
preclinical and clinical disciplines. Dependable accuracy
in these areas underlies the potential of LLMs to sup-
port medical education effectively. Our findings highlighted
varied performances across disciplines, with a significant
increase in response accuracy observed for GPT-4o over
GPT-4 and GPT-3.5.
Overall Performance and Disciplinary
Accuracies
Overall, GPT-4o achieved an accuracy rate of 90.4%,
significantly outperforming both GPT-3.5 (60.0%) and
GPT-4 (81.1%). This improvement is consistent across
both preclinical and clinical domains, emphasizing the
advancements in model development. GPT-4o’s highest
preclinical accuracy rates were observed in social sciences
(95.5%), behavioral and neuroscience (94.2%), and pharma-
cology (93.2%). In clinical clerkships, GPT-4o maintained
high accuracy, particularly in family medicine and inter-
nal medicine, where it achieved a 100% correct response
rate, and demonstrated strong performance in neurology
and psychiatry. These findings underline GPT-4o’s potential
utility in medical education and emphasize the necessity of its
strategic integration into educational curricula.

Question Difficulty and Comparison With
Medical Student Performance
Notably, there was a significant positive correlation between
the percentage of correct responses by medical students and
the likelihood of correct responses by the LLMS, which
indicates that as vignette difficulty increased, the perform-
ance of the artificial intelligence (AI) models reflected the
difficulty gradient experienced by the students. However, it
is worth noting that GPT-4o achieved an overall accuracy of
90.4% in a question set where the medical students average
was less than that of a passing USMLE exam score (59.3%).
Improvements in Diagnostics and
Management
The clinical vignette-based assessments further illustrated the
improvements in GPT-4o in diagnostics and management.
In diagnostics, GPT-4o achieved a 92.7% accuracy rate,
surpassing GPT-4 (83.5%) and GPT-3.5 (65.2%). Simi-
larly, in management tasks, GPT-4o’s accuracy was 88.8%,
significantly higher than both GPT-4 (77.0%) and GPT-3.5
(57.9%).
Factors Contributing to Improved
Performance
The improvements seen in GPT-4o could be attributed to
several advancements in its architecture and the model’s
training, such as more comprehensive datasets and refined
algorithms. This trend of improvement aligns with previous
research noting the progressive enhancements in LLMs’
accuracy and reliability [16-18]. However, an important
consideration is the potential interaction between LLM
performance and the Flynn effect, which describes the
observed rise in intelligence test scores over time. As LLMs
are trained on increasingly up-to-date data, they may reflect
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or even amplify these trends, potentially impacting the
psychometric validity of assessments like the USMLE. For
instance, environmental influences and the availability of
more recent data can significantly impact cognitive perform-
ance, a factor that may similarly affect AI models [36].
The implications of this interaction warrant further explora-
tion, as understanding these dynamics could provide valuable
insights into both the short-term and long-term reliability
of LLM-assisted test performance in medical education.
Additionally, the recency of the datasets used to train GPT-4
and GPT-4o could be another factor contributing to their
improved accuracy compared to GPT-3.5. As these improve-
ments continue, it is essential to assess how they contribute
not only to immediate gains in performance but also to the
broader implications for long-term educational outcomes and
assessment integrity.
Considerations for Integration in Medical
Education
Several considerations must be addressed before integrating
these models into medical education. The ability to correctly
answer USMLE questions is not necessarily the same as
synthesizing and reasoning about a patient’s history, clinical
symptoms, physical exam findings, and laboratory data. This
raises the concern of whether LLMs will be able to provide
safe and accurate guidance to clinicians at the bedside who
are struggling to make sense of a patient’s illness. It will
therefore be important to assess the value of LLMs in real
clinical situations and to assess if and how they can be safely
deployed in clinical settings. To address this, medical schools
and residency program directors should establish mechanisms
to continuously monitor the performance and impact of LLMs
used in clinical settings. It would be valuable to create a
national registry of feedback from students and faculty to
identify errors and unintended consequences associated with
the use of LLMs in medical education and clinical care.

In the context of American medical education, standar-
dized testing environments such as the USMLE play a critical
role in shaping the applicability of LLMs like GPT-4o.
These models must adapt to a testing culture that heavily
emphasizes MCQ formats, which are integral to medical
training and licensure in the United States. While LLMs offer
potential advantages, there is a risk that over-reliance on AI
could hinder the development of essential diagnostic skills
in medical students and clinicians [37,38]. This dependency
on AI tools may lead to a decline in critical thinking and
problem-solving abilities, particularly in situations where AI
support is unavailable [39,40]. These concerns underscore
the importance of thoughtfully integrating AI into medical
education, with careful consideration of its long-term impact
on clinical competencies and ethical implications, such as
fairness and equity in training future health care professionals
[37,38].
Ethical Implications of AI Integration With
Medical Education
The ethical implications of integrating AI, including LLMs,
in medical education and patient care require thorough

consideration. Issues such as data privacy, the potential for
systemic bias in AI algorithms, and the lack of accountability
in AI-driven decisions pose serious challenges. The inherent
biases in training data can lead to skewed AI responses,
impacting clinical decision-making processes [41]. Moreover,
the reliance on AI-driven tools raises concerns about the
equitable distribution of these technologies, as access often
requires paid subscriptions, which could exacerbate dispar-
ities in medical education. To mitigate these risks, educa-
tional institutions should implement clear guidelines for AI
use, including regular audits of AI performance and manda-
tory training for students and faculty on the limitations and
ethical considerations of AI tools. Additionally, establishing
dedicated oversight committees to monitor AI integration
and address any emerging issues in real-time will be crucial
to ensuring these technologies are used responsibly and
effectively.
Study Limitations
This study contains several limitations. The 750 MCQs are
robust, although they are “USMLE-style” questions and not
actual USMLE exam questions. The exclusion of clinical
vignettes involving imaging findings limits the findings to
text-based accuracy, which potentially skews the assessment
of disciplinary accuracies, particularly in disciplines such
as anatomy, microbiology, and histopathology. Additionally,
the study does not fully explore the quality of the explana-
tions generated by the AI or its ability to handle complex,
higher-order information, which are crucial components of
medical education and clinical practice—factors that are
essential in evaluating the full utility of LLMs in medi-
cal education. Previous research has highlighted concerns
about the reliability of AI-generated explanations and the
risks associated with their use in complex clinical scenarios
[10,12]. These limitations are important to consider as they
directly impact how well these tools can support clini-
cal reasoning and decision-making processes in real-world
scenarios. Moreover, the potential influence of knowledge
lagging effects due to the different datasets used by GPT-3.5,
GPT-4, and GPT-4o was not explicitly analyzed. Future
studies might compare MCQ performance across various
years to better understand how the recency of training data
affects model accuracy and reliability.
Future Research Directions
Future research should aim to expand the analysis of medical
education to incorporate more diverse clinical vignettes,
especially those involving imaging and other multimedia
content. This would provide a more comprehensive assess-
ment of LLM capabilities. Longitudinal studies are also
needed to evaluate the long-term effects of AI integration
on learning outcomes and clinical decision-making skills.
Moreover, investigating methods to mitigate inherent biases
in LLMs and exploring the integration of AI with traditional
educational methodologies could provide a more balanced
view of the potential and limitations of these technologies in
medical training.
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Conclusions
In conclusion, this study provides an assessment of the
response accuracies of the ChatGPT series across a wide
array of USMLE preclinical disciplines and clinical clerk-
ships. The significant improvements observed in ChatGPT
4 Omni suggest substantial potential for its use as a tool

for medical education. As the utilization of AI by medical
students and clinicians increases, our findings emphasize the
need for formal curricula and guidelines that ensure proper
usage, as well as the necessity of robust validation and
oversight processes for LLMs as they are integrated into
medical education.
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