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Abstract
Background: Teaching medical students the skills required to acquire, interpret, apply, and communicate clinical information
is an integral part of medical education. A crucial aspect of this process involves providing students with feedback regarding
the quality of their free-text clinical notes.
Objective: The goal of this study was to assess the ability of ChatGPT 3.5, a large language model, to score medical students’
free-text history and physical notes.
Methods: This is a single-institution, retrospective study. Standardized patients learned a prespecified clinical case and, acting
as the patient, interacted with medical students. Each student wrote a free-text history and physical note of their interaction.
The students’ notes were scored independently by the standardized patients and ChatGPT using a prespecified scoring rubric
that consisted of 85 case elements. The measure of accuracy was percent correct.
Results: The study population consisted of 168 first-year medical students. There was a total of 14,280 scores. The ChatGPT
incorrect scoring rate was 1.0%, and the standardized patient incorrect scoring rate was 7.2%. The ChatGPT error rate was
86%, lower than the standardized patient error rate. The ChatGPT mean incorrect scoring rate of 12 (SD 11) was significantly
lower than the standardized patient mean incorrect scoring rate of 85 (SD 74; P=.002).
Conclusions: ChatGPT demonstrated a significantly lower error rate compared to standardized patients. This is the first
study to assess the ability of a generative pretrained transformer (GPT) program to score medical students’ standardized
patient-based free-text clinical notes. It is expected that, in the near future, large language models will provide real-time
feedback to practicing physicians regarding their free-text notes. GPT artificial intelligence programs represent an important
advance in medical education and medical practice.
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Introduction
Teaching medical students the skills required to acquire,
interpret, apply, and communicate medical information is an
integral part of medical education. A crucial aspect of this
process involves providing students with feedback regarding
the quality of their free-text clinical notes. Various meth-
ods have been used to systematically assess clinical notes,

notably, QNOTE [1,2], but they depend on human raters.
This reliance presents numerous challenges, including rater
recruitment and training as well as raters’ availability and
inclination to perform reviews. Furthermore, humans are
susceptible to biases, fatigue, and misinterpretation.

An attractive innovative alternative to human raters is
to use a natural language processing (NLP) program to
score student notes. An NLP program is a computer-based
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algorithm that automatically detects specific meanings in free
text. The potential advantages of using an NLP program to
grade student notes include the following: it is systematic; it
is objective; it avoids human bias, fatigue, and misinterpreta-
tion; it is essentially free to run; it can assess any number of
notes in seconds; and it can grade notes in real time to provide
immediate student feedback.

A new type of NLP program was introduced in November
2022, namely, ChatGPT 3.5 (OpenAI) [3], a large language
model (LLM) based on the generative pretrained trans-
former (GPT) artificial intelligence algorithm. It has achieved
a 91.7% score on the United States Medical Licensing
Examination (USMLE) style questions [4]. Furthermore,
it scored 87.3% on a clinical knowledge test, 91.7% on
medical genetics, 89.2% on anatomy, and 92.4% on profes-
sional medicine [4]. Its medical-related capabilities include
improving clinician empathy [5], responding to patient
questions [6], performing differential diagnoses [7], classify-
ing radiology reports [8], writing discharge summaries [9],
providing accurate prevention advices to patients [10], and
predicting suicide risk [11]. ChatGPT has been compared to
human raters in terms of grading short-answer preclerkship
medical questions. The ChatGPT-human Spearman correla-
tions for a single assessor ranged from 0.6 to 0.7 [12].

We assessed ChatGPT’s ability to accurately score medical
students’ free-text notes on history of present illness, physical
examination, and assessment and plan. We compared these
scores to standardized patients’ scoring of the clinical notes.
We hypothesized that ChatGPT would be more accurate than
standardized patients. To our knowledge, this is the first study
to assess the ability of a GPT program to score medical
students’ standardized, patient-based, clinical free-text notes.

Methods
Procedure
This was a single institution, retrospective study. Standar-
dized patients were people who volunteered to interact
with medical students to assist in their clinical training.
They were trained on a prespecified medical case, and
acting as the patient, they interacted with first-year medi-
cal students, simulating a patient with that condition. This
included responding to clinical questions and undergoing an
examination by the medical student. The students documen-
ted their interaction with standardized patients in free-text
clinical notes. They wrote a chief complaint; history of the
present illness; review of systems; physical examination; and
differential diagnosis, featuring 3 rank-ordered diagnoses. In
addition, they provided their pertinent positives and nega-
tives and suggested follow-up tests. At our medical school,
standardized patients provided verbal feedback to students
regarding their interaction and scored their students’ notes.
They had 7‐10 days to score the student notes and send
the results to the course instructor. They did not provide
any grading feedback to the students. The advantage of

using standardized patients over actual patients for training
medical students is that the medical students’ experiences,
and therefore, their clinical notes are based on a consistent
clinical presentation.

The study case and scoring rubric, “Suzy Whitworth,”
were developed by the Association for Standardized Patient
Educators and adapted by the Mid-Atlantic Consortium
of Clinical Skills Centers in June 2018, with additional
formatting edits in January 2019. The standardized patients
were trained on this case and its scoring rubric. The case
contained 85 scorable elements that were expected to be
present in the students’ notes. Three scoring rubric exam-
ples were as follows: “Notes chief complaint of shortness of
breath (shortness of breath, dyspnea, difficulty breathing, and
can’t catch my breath)”; “Notes sudden onset (acute, all of
the sudden, and all at once”; and “Notes timing (a few hours
ago, this morning, upon awakening, or today).” The rubric
combined the 85 scorable elements into 12 classes. ChatGPT
and the standardized patients scored as either correct or
incorrect each of the 85 elements in the deidentified students’
notes. An error was either an incorrect answer or the absence
of an answer. A reviewer checked the standardized patient
scoring and the ChatGPT scoring and a second reviewer
checked the first reviewer’s scores.

ChatGPT is an LLM based on the GPT artificial intelli-
gence algorithm. It was pretrained on 45 TB of data and
it consists of attention, which connects and weights natural
language meanings, and an artificial neural network, which
organizes and stores the meanings [13]. It accepts natural
language input and provides natural language output. For
each medical student and for each rubric, the researcher
created a new prompt that asked ChatGPT if the rubric’s
meaning was contained in the student’s free-text note.

For ChatGPT and standardized patients, the measure of
accuracy was the percent correct for each of the 12 catego-
ries and across the 12 categories. Student t tests (2-tailed)
compared the mean error rate across the 12 classes for
ChatGPT with the mean error rate across the 12 classes for
the standardized patients using the R language (R Project for
Statistical Computing) [14].

Ethical Considerations
Ethical approval was waived as per section 46.104(d) of Code
of Federal Regulations, as this was a quality improvement
project [15].

Results
The study population consisted of 168 first-year medical
students, the case scoring rubric consisted of 85 elements,
resulting in a total of 14,280 scores. There were 4 standar-
dized patients, each working with one-fourth of the stu-
dents. The incorrect scoring (error) rates for the standardized
patients and ChatGPT are shown in Table 1.
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Table 1. Incorrect scoring rates for ChatGPT and the standardized patients across free-text note categories and across all categories.
Category Scoring opportunities for the 168 students, n Standardized patient errors, n (%) ChatGPT errors, n (%)
Chief complaint 840 135 (16.1) 17 (2.0)
History of present illness 1512 226 (14.9) 35 (2.3)
Review of systems 1008 67 (6.6) 7 (0.7)
Past medical history 1512 43 (2.8) 21 (1.4)
Physical exam 2352 181 (7.7) 25 (1.1)
Diagnosis (pulmonary embolism) 168 3 (1.8) 0 (0)
Pulmonary embolism evidence 2352 182 (7.7) 8 (0.3)
Diagnosis (pneumonia) 168 0 (0) 0 (0)
Pneumonia evidence 1848 66 (3.6) 4 (0.2)
Diagnosis (pneumothorax) 168 0 (0) 7 (4.2)
Pneumothorax evidence 1176 54 (4.6) 5 (0.4)
Diagnostic studies 1008 66 (6.5) 16 (1.6)
Totala 14,280 1023 (7.2) 145 (1.0)

aChatGPT versus standardized patient; P=.002.

The category error rates for standardized patients and
ChatGPT, respectively, were as follows: chief complaint: 135,
17; history of present illness: 226, 35; review of systems:
67, 7; past medical history: 43, 21; physical examination:
181, 25; first diagnosis: 3, 0; evidence for first diagnosis:
182, 8; second diagnosis: 0, 0; evidence for second diagnosis:
66, 4; third diagnosis: 0, 7; evidence for third diagnosis: 54,
5; and diagnostic studies: 66, 16. The ChatGPT incorrect
scoring rate was 1.0%, and the standardized patient incorrect
scoring rate was 7.2%. The ChatGPT error rate was 86%
lower than the standardized patient error rate. The ChatGPT
mean incorrect scoring rate of 12 (SD 11) was significantly
lower than the standardized patient mean incorrect scoring
rate of 85 (SD 74; P=.002).

Discussion
ChatGPT had a significantly lower error rate compared to
standardized patients. This suggests that an LLM can be used
to score medical students’ notes.

NLP programs have been used in several medical
education settings. Medical education NLPs have been based
on keywords, expert systems, statistical algorithms, and
combinations of these approaches. DaSilva and Dennick [16]
transcribed medical student problem-based verbal learning
sessions and used an NLP program to count the frequency of
technical words. Zhang et al [17] implemented both a naïve
Bayes approach and a supervised support vector machine
method to assess resident performance evaluations. Their
sentiment accuracies were 0.845 for naïve Bayes and 0.937
for the support vector machine. Spickard et al [18] used an
electronic scoring system to detect 25 core clinical problems
in medical students’ clinical notes. They achieved a 75%
positive predictive value (PPV) on 16 of the 25 problems.
Denny et al [19] examined whether students mentioned
advance directives or altered mental status in their clinical
notes. For advance directives, their sensitivity was 69% and
their PPV was 100%, and for mental status, their sensitivity

was 100% and their PPV was 93%. Sarker et al [20] used
a semisupervised NLP method to assess students’ free-text
notes. Their accuracy over 21 cases and 105 notes was a
sensitivity of 0.91 and a PPV of 0.87. Two recent papers
from the University of Michigan’s Department of Surgery
[21,22] assessed resident feedback and competency. Solano
et al [21] dichotomized the narrative surgical feedback given
to residents into high and low quality and trained a logistic
regression model to distinguish between them. Their model
achieved a sensitivity of 0.37, a specificity of 0.97, and a
receiver operating characteristic (ROC) of 0.86. Otles et al
[22] assessed narrative surgical resident feedback using a
variety of statistical methods. The support vector machine
algorithm achieved the best result with a maximum mean
accuracy of 0.64. Abbott [23] studied whether an NLP
program could assess the clinical competency committee
ratings of residents in terms of language that correlated with
the 16 Accreditation Council for Graduate Medical Education
Milestones. The ROCs for the 16 milestones ranged from
0.71 to 0.95 and the mean ROC was 0.83. Neves et al
[24] examined the ability of RapidMiner Studio, a machine
learning program, to assess the quality of attending feedback
on resident performance. Their accuracies ranged from 74.4%
to 82.2%.

If NLP programs are to be used to automate the grad-
ing of students’ notes, they must achieve an acceptable
accuracy. Sarker et al [20] suggested that any method of
scoring medical notes should achieve an accuracy close
to 100%. Regrettably, none of the reported medical educa-
tion NLPs achieved an acceptable accuracy. In our study,
standardized patients also failed to achieve an acceptable
accuracy. ChatGPT attained an accuracy close to 100% and
is, therefore, suitable for scoring students’ free-text notes.

A potential limitation of this study is that it has been
suggested that GPT-based methods have the potential to
generate unreliable answers under certain circumstances. We
did not find that to be true in our study. Another potential
limitation is that, although ChatGPT is free to the public, it
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has resource requirements. It used 45 TB of data, it has 175
billion parameters, and it runs on supercomputers residing
in the cloud. This is a great deal of computing power for
student notes. Fortunately, there are open-source GPTs, for
example, Meta’s Llama, that can be run on a workstation.
We would have liked to examine the standardized patient
validity literature, but to our knowledge, no such study
exists. Finally, assessing note errors does not directly address
clinical reasoning.

An important advantage of LLMs is their ability to provide
real-time scoring and feedback on student clinical free-text
notes. This immediate assessment offers students a valua-
ble learning opportunity because they can reflect on their
performance while the clinical interaction is still fresh in their
mind. Another advantage is that the scoring is accurate and
objective so students will no longer have to worry about
human error and bias. A disadvantage of ChatGPT was that it
was time consuming. Fortunately, there are compound GPTs

that can perform the entire assessment of all the elements and
all the students at once. In terms of clinical reasoning, in the
future, we will be asking medical students, as part of their
clinical note write-up, to provide their clinical reasoning and
we can have a GPT assess the quality of their reasoning.

It should be noted that the use of LLMs to score clinical
notes need not be limited to medical students. It is expected
that in the near future, GPT-based artificial intelligence NLPs
will be applied to provide real-time feedback on free-text
clinical notes to practicing physicians.

In conclusion, ChatGPT demonstrated a significantly
lower error rate compared to standardized patients. This is
the first study to assess the ability of a GPT program to
score medical students’ standardized, patient-based, free-text
clinical notes. GPT artificial intelligence programs represent
an important advance in medical education and medical
practice.
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