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Abstract

Despite the increasing relevance of statistics in health sciences, teaching styles in higher education are remarkably similar across
disciplines: lectures covering the theory and methods, followed by application and computer exercises in given data sets. This
often leads to challenges for students in comprehending fundamental statistical concepts essential for medical research. To address
these challenges, we propose an engaging learning approach—DICE (design, interpret, compute, estimate)—aimed at enhancing
the learning experience of statistics in public health and epidemiology. In introducing DICE, we guide readers through a practical
example. Students will work in small groups to plan, generate, analyze, interpret, and communicate their own scientific investigation
with simulations. With a focus on fundamental statistical concepts such as sampling variability, error probabilities, and the
construction of statistical models, DICE offers a promising approach to learning how to combine substantive medical knowledge
and statistical concepts. The materials in this paper, including the computer code, can be readily used as a hands-on tool for both
teachers and students.
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Introduction

The correct use and application of statistics plays a fundamental
role in the health sciences, in turn providing objective and
quantitative evidence to support decision-making in public
health [1]. Despite the increasing relevance of statistics in health
research, it is often taught in isolation, usually through standard
lectures covering the theory and methods followed by computer
exercises with given data sets. This can lead to a disconnect
between statistical and epidemiological methods such as study
design, as well as insufficient awareness of important statistical
concepts such as sampling variability [2]. Therefore, teaching
methods that deliver statistical concepts in conjunction with
epidemiology for students in the health sciences are crucial for
educational development [3].

Simulation-based learning has previously been proposed as a
tool to support engaging learning [4] and has been shown to be

an effective learning method to develop critical thinking and
reflective skills [5-7]. In the context of public health and
epidemiology, 2 articles in particular highlight Monte Carlo
simulations [8] (hereafter simulations) as a method to illustrate,
learn, and understand statistical and epidemiological concepts.
First, Rudolph et al [3] demonstrate how to use simulations to
teach and learn nondifferential misclassification and understand
the concept of the P value. Second, Fox et al [9] illustrate how
to design simple simulations from directed acyclic graphs and
use them to explain epidemiological concepts. Both papers
provide helpful resources for students to familiarize themselves
with the basics of setting up a simulation.

However, despite a broad acceptance of simulations as a helpful
tool to learn statistical and epidemiological concepts [5], in our
experience, they are rarely implemented as the main teaching
and learning method for students in health sciences. Rather than
using simulations to learn a stand-alone element of statistics,
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we propose a learning method that uses simulations to explore
and understand the major steps involved in conducting a
scientific investigation. In expanding upon the current
foundations of simulation-based learning in health sciences, we
introduce DICE (design, interpret, compute, estimate), an
engaging, problem- and simulation-based learning method. The
overall aim is to promote statistical reasoning in the health
sciences by combining medical and statistical knowledge in
designing epidemiological studies. The purpose of this viewpoint
paper is therefore to describe the concept of DICE and discuss
its potential strengths and limitations in learning statistics in
the health sciences. The statements expressed in this paper are
based on the experiences and opinions of the authors.

The remaining part is structured as follows: we will first describe
the proposed method—DICE—and explain the intended learning
objectives and outcomes. We will then illustrate the use of DICE
with an example of a time-to-event outcome. Finally, we will
discuss some potential strengths and limitations of applying the
method in a classroom setting.

The DICE Approach
DICE is an engaging learning method that enables students to
use simple simulations to design, analyze, and interpret a
realistic epidemiological study (note that the acronym DICE
represents the learning steps involved, but not in order). The

use of DICE as a learning tool combines problem-oriented
learning [10,11] with simulations [12]. A detailed description
of Monte Carlo methods can be found elsewhere [13]. While
there are numerous ways to simulate artificial data, we focus
on the approach presented by Fox et al [9] due to its simplicity
to implement in statistical software and its easy-to-follow
translation from a causal framework. In brief, simulations enable
us to study a mechanism empirically by sampling from a
statistical model that governs the mechanism. Data are then
sampled from a predefined probability distribution (eg,
Bernoulli, normal, or Weibull) that defines the mechanism,
commonly referred to as the inverse transformation sampling
method [14]. Further, the data are analyzed with an appropriate
statistical model (preferably the same model that generated the
data). These steps can be repeated a large number of times to
empirically observe the variability of the sampling process [13].

Steps and Learning Objectives
DICE includes 6 major steps that cover the major stages of a
scientific investigation. Figure 1 visualizes the chronological
order of these steps and highlights the approximate amount of
time that one step requires. The second step—designing an
investigation including power and sample size calculations with
simulations—is further divided into 3 parts, which can be
repeated to calibrate the power and sample size of a study before
moving on to step 3.
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Figure 1. Flowchart of the 6 steps involved in DICE (design, interpret, compute, estimate) with an illustrative pie chart showing the approximate time
dedicated to each step. The curved arrows in step 2 indicate that these activities can be completed multiple times to calibrate the sample size and power
of a study before moving on to the next step.

The key learning objectives and outcomes of DICE, as
highlighted in Figure 2, target experiential learning [15] and
active learning styles [16] according to Bloom’s taxonomy of
educational objectives, including applying recently learned
concepts and theories, making informed judgements and
evaluations, and generating new knowledge [17]. DICE is a
flexible method that accommodates different learning styles
that have been shown to play an important role in medical

education [18]. As such, each student can work according to
their strengths (eg, taking a leading role in the group to cover
a specific aspect of the design of a simulated study, like
computer coding or result interpretation). Due to the
heterogeneity in the working groups, it can be expected that
students will use their own learning styles and strengths to learn
from other students with different skills [18].
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Figure 2. The main learning objectives and outcomes across the steps of DICE (design, interpret, compute, estimate). The steps of DICE include (1)
identifying the health problem, (2) designing an investigation including power and sample size calculations with simulations, (3) generating a unique
sample of data, (4) analyzing the sample according to the plan, (5) interpreting the findings carefully, and (6) writing a short abstract to be presented in
class.

A Guide Through an Example
Each step is now practically explained with an example. The
following example is inspired by 2 recent epidemiological
studies [19,20]. All information and data are simulated and only
serve educational purposes. The computer code in Stata
(StataCorp) and R (R Core Team) can be readily used to
replicate the example (the code is provided in Multimedia
Appendix 1).

Step 1: Identifying the Health Problem
During the first step of DICE, students should think about a
particular problem, population, and area that they would like
to investigate. This can be somewhat time-consuming and
requires a decision about the nature of the research question (ie,
causal, descriptive, or predictive) [21]. As we focus on
simulating data according to a causal framework explained by
Fox et al [9], the research questions are intended to answer a
causal question. Other forms of research questions can, of
course, be incorporated and simulated; however, they are not
the focus of this example. In our example, the aim is to examine
the effect of physical activity on the 10-year mortality rate in a
large cohort of older people.

Step 2: Designing an Investigation Including Power and
Sample Size Calculations With Simulations
The second step addresses the overall design of the study,
including the assessment methods for the specified variables.
The step is further divided into three specific parts: (1) students
should reflect on the appropriate study design (eg, experimental
or observational), (2) put forward the possible mechanisms
(confounding, interaction, etc) underlying all the random
variables involved in the study, and (3) discuss plausible values
for all of the parameters. These are discussed in more detail
below.

Part 1: Choosing an Appropriate Study Design

Designing an investigation that includes power and sample size
calculations with simulations requires careful consideration of
available literature and substantive knowledge about the
underlying health problem. We recommend allocating sufficient
time for this step of planning a realistic simulation study.

In our example, we design a large, observational cohort study
with a confounding effect by age. Information on physical
activity (3.5 hours per week of moderate to vigorous physical
activity [MVPA] vs less), together with age (≥80 years vs <80
years), is assessed at baseline in a short questionnaire. The
mortality rate in a cohort of older people is likely to increase
over time due to aging, among both physically active and
inactive populations. Assuming a baseline mortality rate in the
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younger and physically inactive population of 7 deaths per 1000
person-years, we determined that 5000 individuals (about 1005
deaths during 10-year follow-up) would provide a statistical
power of about 86% to detect at least a 20% lower mortality
rate (age-adjusted hazard ratio 0.8) in the physically active
population relative to the inactive population. A 2-sided
Wald-type test for the age-adjusted hazard ratio conferred by

physical activity equal to 1 with a type II error of 5% is
conducted based on a multivariable Weibull survival model
including physical activity and age as covariates.

Figure 3 shows the sampling distribution of the age-adjusted
hazard ratio comparing physically active versus inactive
individuals under the null and alternative hypotheses.

Figure 3. Simulated sample distribution of the age-adjusted mortality hazard ratio comparing active versus inactive individuals under the null and
alternative hypotheses (hazard ratio 0.8). The simulated statistical power was obtained by counting the number of studies that correctly rejected the null
hypothesis with a 2-sided Wald-type test at a significance level of 5% based on a multivariable Weibull survival model. The number of simulations is
10,000, the sample size of each study is 5000, and the average number of deaths within each study is 1005.

Part 2: Mechanisms Underlying the Random Variables

Parameters and their distributions can be inspired by previous
studies, textbooks, or substantive knowledge from group
members. For example, if the exposure is defined as systolic
blood pressure (mmHg), students can assume an approximately
symmetric and bell-shaped distribution with a given mean and
SD and derive the parameter from a normal distribution function.
For this study, we need the following variables: (1) z, an
indicator variable for the older population (1 “>80” vs 0 “≤80
years”); (2) x, an indicator variable for the physically active
population (1 “>3.5 h/w of MVPA” vs 0 “≤3.5 h/w MVPA”);
and (3) t, the time from baseline to death (in years) or the end
of follow-up (10 years), whichever came first.

Part 3: Define the Values for the Parameters

During this step, students should write a few lines of code or a
function capable of generating data according to the desired
study and mechanism. Simulations can be used to calibrate the
sample size and statistical power of the study. To achieve the
desired statistical power (eg, 80%), the sample size can be
changed accordingly during this step. This requires some time,
and we recommend students try to adapt certain values for the
parameters or underlying mechanisms from the previous step

(Figure 1). This process is commonly referred to as the data
generating mechanism (DGM). We understand DGM as the
mechanism underlying the causal structure, including the
uncertainty governing the observed data. The simulated power
of the statistical test to detect an effect is simply given by the
sum of studies that reject the null hypothesis of no effect divided
by the total number of simulated studies.

In our example, the first variable to be generated is baseline age
(about 60% are older than 80 years of age), which is a
confounding variable in the relationship between physical
activity and mortality:

For the exposure model, the second variable to be generated is
baseline physical activity as a function of age. People aged ≤80
years have a probability of being physically active of 50%,
whereas the odds of being physically active among older people
are 1/3 (67% lower odds) relative to younger people:
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Of note, Bernoulli is a statistical function, whereas logit and ln
are a mathematical function.

For the outcome model, individual time-to-death (in years)
conditional on the variables physical activity and age is obtained
under the Weibull survival model, as follows:

where γ is the parameter defining the departure from a simpler
exponential (constant mortality rate) survival model. The value
of γ is set to 1.1, indicating a slight increase in the mortality rate
over the follow-up period in all the covariate patterns.

The natural logarithm of the baseline mortality rate (per 1 year)
among young and inactive people is assumed to be 7 deaths per
1000 person-years, so the intercept is β0=ln(7/1000)=–4.962

The age-adjusted mortality hazard ratio comparing physically
active versus inactive people is set to 0.80, as determined by
β1=ln(0.80)=–0.2231.

The physical activity-adjusted mortality hazard ratio comparing
older versus younger people is set to 4, computed as
β2=ln(4)=1.386.

Given a random value for the survival probability S ranging
over the 0 to 1 interval, a random value of individual
time-to-death (in years) conditionally on the variables physical
activity and age is obtained as follows:

In addition, any randomly generated time-to-death beyond the
follow-up time of 10 years is set to 10 and considered censored
(ie, still alive at the end of the follow-up). An indicator variable
for death or censored status is also created to inform any survival
analysis.

Step 3: Generating a Unique Sample of Data
Once the study has been designed with sufficient statistical
power to detect the relevant effect, the next step is to draw one
unique sample. Students will analyze and present only this
sample in class. The uniqueness and reproducibility of the
simulated data are guaranteed by setting a numerical sequence,
called a seed, before obtaining realizations of the random
variables. This is important for the exact replication of the study.
Every group of students is asked to use a common seed in
generating the analytical sample of data so that all groups
replicate the study under the same conditions. Each group will
have a different research question and an underlying health
problem with varying parameters. The reason for choosing a
seed in the beginning is to highlight the uniqueness of a single
study generated under a known DGM. The easiest choice is to
specify the seed according to the date of the DICE activity. In
our example, we use the seed 20230413 (based on the year,
month, and date: “YYYYMMDD”). However, for specific tasks

such as power calculations or simulating a distribution of effects,
the seed must be deleted to ensure variability in the simulations.

Step 4: Analyzing the Sample of Data
The outcome model is specified according to the process
underlying the data, and it is estimated based on the only sample
available. Students estimate the statistical model whose
performance was evaluated in the initial step of the study design.
In our example, we estimate a multivariable Weibull regression
model including physical activity and age as covariates.

Step 5: Interpreting the Findings
Students carefully interpret the estimated model and write about
the inferential results. In our example, during the 10-year
follow-up period, a total of 974 people died out of 5000.
Compared with inactive people, the age-adjusted hazard ratio
for active people was 11% lower (hazard ratio=0.89; 95% CI
0.78-1.03). A Wald-type 2-sided test indicates some
compatibility between this sample of data and the hypothesis
of a null age-adjusted mortality hazard ratio for physical activity
(z=–1.52; P=.13). This unique sample of data is an example of
type II error (failing to reject the null hypothesis, which is indeed
incorrect). Nonetheless, the magnitude and direction of the
hazard ratio indicate a beneficial effect of physical activity on
the 10-year mortality rate. This provides an example of correctly
differentiating statistical and scientific inference.

Step 6: Writing an Abstract
Each group of students should then write a structured scientific
abstract (200-250 words) summarizing all the previous steps
suitable for an epidemiological conference. The findings and
interpretation are then presented in class. Each group of students
briefly presents their findings and reasoning behind the study
design. Teachers and peers have the possibility of asking
questions. The presentations of each group should not exceed
10 minutes per group.

What Have we Learned?
Based on our experiences teaching with DICE and to conclude
the steps of DICE shown in the practical example, we hope the
key learning lessons for students will include the following:
First, students should realize that the most challenging and
time-consuming step is the design of the study and identifying
a plausible distribution of the random variables involved, the
mechanisms underlying the data, and all the parameters
included. Second, students should understand that error
probabilities (type I, type II, and power) in conducting a test of
hypothesis can be easily evaluated by replicating the study many
times under similar conditions (Figure 3) using a simulation.
Third, students should appreciate the fundamental distinction
between the analysis of a single study and the analysis of a
collection of estimates obtained from its replication (Figure 4).
Fourth, students should understand that the ability of a study to
find a relevant exposure or intervention effect (statistical power)
can be achieved only with respect to one parameter of interest.
Fifth, students should learn that the correct use of statistics plays
a key role in all stages of a scientific investigation.
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Figure 4. Sampling variability of the estimated survival probability comparing physically active and physically inactive young participants based on
900 simulated studies. The thick dashed lines for both physically active and inactive groups show the functions that were set under the original
data-generating mechanism.

Strengths and Limitations of DICE
We proposed an engaging learning method, DICE, to stimulate
experimental, active, and enjoyable learning of statistical
concepts, fostering key scientific skills in designing and
conducting experiments. While the main strengths of this
approach lie in its interactivity and group-based nature, we
acknowledge several limitations.

First, the proposed simulation method is practically limited to
only a few numbers of parameters that can be included in the
design of a study. Each additional variable increases the
complexity of the DGM exponentially. Thus, this approach is
best suited for illustrative, simplified examples of realistic health
problems. More sophisticated data derived from multivariate
distributions would exceed the simplicity of the method but can,
of course, be considered for more advanced classes.

Second, implementing DICE is resource-intensive and should
not be done in a short time frame (eg, less than 1 hour).
Although this is not a direct limitation of the method, it might
be a limitation of its implementation in a classroom.

Third, the effectiveness of DICE in conveying statistical
concepts in epidemiology has not been formally evaluated yet.
This paper is a description and discussion of the method as
implemented in class at a medical university. A formal
evaluation of its effectiveness in learning statistics is being
devised.

Implementing DICE in the Classroom
Based on the experiences of the authors in using DICE, we
summarize the following points for its implementation in the

classroom for graduate students in medical sciences, including
public health and epidemiology.

First, to implement DICE in a classroom, we recommend a
classroom size of approximately 20-40 students, with small
groups of 3-5 students from heterogeneous scientific
backgrounds. Each group should consist of students who have
different strengths and learning styles. We experienced that this
could improve interaction between students and increase the
joy of learning statistics.

Second, throughout the group work, students are encouraged
to discuss and reflect upon the study design, practice the
generation and simulation of data under a certain mechanism,
and communicate their findings and interpretation of the study.
We experienced that some students require more support to
understand and use the provided computer code, particularly in
settings with fewer students experienced in coding. It can help
to go through an example of a simulated study with Stata or R
code in front of the class.

Third, DICE can be implemented within a full day of teaching
or over several days. For a 1-day implementation, the morning
can be used for students to frame their research question and
develop the study using simulations (steps 1-3). The afternoon
can then be reserved for steps 4-6, ending with the presentation
of the abstracts. It is important to keep in mind that the first 2
steps require most of the time (Figure 1). Students should not
be rushed through these steps and should be provided with
sufficient guidance and support to find an adequate research
question, study design, and set up the simulations. Alternatively,
DICE can be implemented over several days. An introduction
to DICE is given in class, and students can work over several
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days in their respective groups. The final day can be used for
presenting and discussing the studies and outcomes of each
group.

Conclusion
This paper introduces an engaging simulation-based method,
DICE, to learn statistics in the health sciences. We argue that

DICE can boost statistical reasoning and bridge the gap between
substantive knowledge and statistics for all major steps of a
scientific investigation. Students can learn fundamental
statistical and epidemiological concepts with simulations and
combine learning of technical aspects such as coding with
theoretical concepts such as error probabilities. The materials
in this paper can be readily used by teachers and students.
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