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Abstract
Background: Generative large language models (LLMs) have the potential to revolutionize medical education by generating
tailored learning materials, enhancing teaching efficiency, and improving learner engagement. However, the application of
LLMs in health care settings, particularly for augmenting small datasets in text classification tasks, remains underexplored,
particularly for cost- and privacy-conscious applications that do not permit the use of third-party services such as OpenAI’s
ChatGPT.
Objective: This study aims to explore the use of open-source LLMs, such as Large Language Model Meta AI (LLaMA) and
Alpaca models, for data augmentation in a specific text classification task related to hospital staff surveys.
Methods: The surveys were designed to elicit narratives of everyday adaptation by frontline radiology staff during the initial
phase of the COVID-19 pandemic. A 2-step process of data augmentation and text classification was conducted. The study
generated synthetic data similar to the survey reports using 4 generative LLMs for data augmentation. A different set of 3
classifier LLMs was then used to classify the augmented text for thematic categories. The study evaluated performance on the
classification task.
Results: The overall best-performing combination of LLMs, temperature, classifier, and number of synthetic data cases is via
augmentation with LLaMA 7B at temperature 0.7 with 100 augments, using Robustly Optimized BERT Pretraining Approach
(RoBERTa) for the classification task, achieving an average area under the receiver operating characteristic (AUC) curve of
0.87 (SD 0.02; ie, 1 SD). The results demonstrate that open-source LLMs can enhance text classifiers’ performance for small
datasets in health care contexts, providing promising pathways for improving medical education processes and patient care
practices.
Conclusions: The study demonstrates the value of data augmentation with open-source LLMs, highlights the importance of
privacy and ethical considerations when using LLMs, and suggests future directions for research in this field.
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Introduction
Overview
Generative large language models (LLMs) are powerful
technologies that leverage machine learning techniques
to generate novel and contextually relevant content. By
training on vast amounts of data, LLMs have the capa-
bility to understand and mimic human language patterns,
thereby producing text that closely resembles human-writ-
ten content [1,2]. LLMs represent a subset of generative
models characterized by their vast training data and result-
ing complexity. With billions of parameters, LLMs such as
GPT-3 and GPT-4 by OpenAI are capable of generating text
that is often indistinguishable from human-written content,
provided a suitable context is given (OpenAI) [3].

The use of LLMs has the potential to address critical
challenges in medical education. In environments where
teaching resources are limited, these models can generate
learning materials from case studies to interactive dialogues
that align with specific learning objectives and target specific
topics [4,5]. Furthermore, they can create diverse and
complex patient scenarios that can supplement lecture content
by providing real-time clarifications, and context to com-
plex topics, ensuring a deeper understanding for students
[6]. By leveraging the capabilities of LLMs, educators can
identify content gaps, ensure comprehensive coverage of
essential subjects, and ultimately enhance the quality and
effectiveness of medical education [7,8]. These models can
enhance teaching efficiency and learner engagement, thereby
potentially improving learning outcomes.

LLMs, however, pose several challenges in their applica-
tion in medical education. Ethical use and privacy concerns
need to be considered, especially when using real-world data
for training. Cost concerns might arise due to the computa-
tional resources needed for training and fine-tuning these
models. GPT-3 and GPT-4 (and the product ChatGPT which
is built upon them) are closed-source models owned by
OpenAI; their use thus not only comes at a financial cost,
but also generates privacy concerns due to needing to expose
one’s data to a third-party company. While open-source
LLMs exist, relatively little attention has been paid to their
utility, despite the fact that they alleviate both cost and
privacy concerns attached to the use of commercial LLMs.

The application of these models in medical education
is becoming increasingly prevalent. For instance, LLMs
have been used to aid revolutionizing medical curriculum
development [8,9], teaching methodologies [10], personalized
study plans and learning materials [11], assessments and
evaluation [12,13], medical writing and assistance [14,15],
and medical research and literature review [16,17]. The vast
potential of these technologies opens up novel avenues for
educating the future generation of health care providers.

Over the past few decades, self-reported data from health
care workers, such as incident reports, have been applied to
medical education in many health care areas. These include
analyzing potential ethical conflicts within hospitals [18],

evaluating Bendamustine-related skin disorders [19], finding
predictive patterns of human contributing factors in radiation
therapy [20], and improving patient safety and care [21-23].
Despite these applications, LLMs have so far, not been used
in the analysis of self-reports. There is an opportunity to
leverage hospital self-reports to enhance medical education.

Integrating artificial intelligence (AI) and LLMs in
self-report analysis has the potential to revolutionize bottom-
up learning from worker-generated data, facilitating more
efficient and accurate identification of workflow challenges,
systemic issues, strategies and tactics to address these, and
areas for improvement in clinical decision-making and patient
care. This study addresses the use of LLMs, particularly
open-source LLMs, to mitigate a specific problem encoun-
tered in the analysis of hospital staff survey data: the lack
of ample training data for a text classification task. This task
involves classifying text responses into categories based on
their relevance to the availability of resources in the hospital.
Insufficient training data can limit the model’s ability to learn
and make accurate classifications.

The objective of this study is to evaluate the effectiveness
of using open-source LLMs for data augmentation in this text
classification task. By generating synthetic survey respon-
ses, LLMs can potentially increase the size and diversity
of the training dataset, leading to improved model perform-
ance in text classification. Text classification, in turn, is a
useful way to analyze free-text reports for categories and
themes that are relevant from an educational standpoint. In
our research, text classification is used to identify valuable
insights from self-reported narratives of the lived experiences
of frontline health care workers. Identifying such patterns
and capabilities that are situated in the context of everyday
work, can be valuable in generating teachable content for
medical education. Doing so with augmented data would
allow for a richer dataset of realistic learning instances based
on everyday work. This paper presents a case study of this
approach, aiming to provide insights and guidance for similar
applications in medical education and health care operations.
Related Work
Data augmentation is the process of generating new data
from existing data. This process is generally used to increase
small datasets or create more diversity in a dataset where
underrepresented populations are ignored by the model. A
lack of diversity in a language model’s training set can
lead to poor generalizability. For example, LLMs performing
numerical reasoning perform better on tasks with terms seen
frequently during training, with a gap in accuracy of up to
70% when solving problems containing terms common in the
training data as opposed to rare terms [9]. Few-shot learn-
ing is generally used with data augmentation because of the
lack of usable data and its ability to be efficient with small
amounts of data. LLMs are either used to slightly change
examples to create new data or generate new data from
examples. Using methods that change specific words in slot
filling fill in the blank [24], where those words are switched
with a semantically similar word, is a widely used method to
change existing data slightly. Generative models typically use
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fine-tuned versions of LLMs [25,26] with prompts, including
select examples from the dataset and the label the model is
supposed to generate. Zero-shot prompting has also been used
with ChatGPT [27,28] in low-resource situations. Models
that have received no fine-tuning have also been shown to
perform well [29] train an intent classifier, and feed it into
the LLM to generate data. Human-in-the-loop studies have
been shown to be successful. A human expert filters through
generated data and discards generated data that deviate from
the training data [30]. Another filtering technique is using a
binary sentence classifier to determine whether the original
and the augment are semantically similar. We expand the
existing literature in this space by exploring the case of
low-resource data augmentation in the face of cost and
privacy concerns that prevent relying on third-party services
such as OpenAI’s ChatGPT, using few-shot prompting on
open-source LLMs.

Methods
Ethical Considerations
This research study does not require institutional review
board approval according to Clemson guidelines [31]. The
project involves analysis of a preexisting anonymized dataset,
and thus does not constitute research involving human
participants as outlined in the federal regulations [45 CFR
46.102(e)]. Our research involves neither obtaining informa-
tion through intervention or interaction with living individu-
als, nor the use, study, analysis, or generation of identifiable
private information. This type of secondary data analysis,
where the researchers do not have access to identifying
information, is not considered research involving human
participants and therefore does not require institutional review
board oversight.
LLMs for Data Augmentation
We use LLMs for data augmentation, specifically focusing
on Large Language Model Meta AI (LLaMA) and Alpaca
models. LLaMA is a collection of foundation language
generation models with varying complexities ranging from
7 billion (7B) to 65 billion (65B) parameters, introduced
by [10]. These models were trained on approximately 1.4
trillion (1.4T) tokens, an extensive dataset derived entirely
from publicly accessible sources, thus eliminating depend-
ency on proprietary databases and increasing transparency.
The models themselves are open-source and freely available
to researchers.

In terms of their architecture, LLaMA models are
built on the transformer architecture [32] and incorporate
several advancements proposed in recent research, includ-
ing prenormalization [33] for improved training stability,
the SwiGLU activation function [34] for enhanced perform-
ance, and rotary embeddings [35] for improved positional
encoding. Notably, even at a comparatively smaller scale,
LLaMA models are competitive with GPT-3 (175B) in a wide
variety of benchmarks. Their combination of small size (and
corresponding computational accessibility) with competitive

performance, in conjunction with their status as open-source,
motivated our choice to focus our work on these models.

Alongside the LLaMA models, we use a set of Alpaca
models in our experiments. These models are LLaMA models
that have been fine-tuned by Taori et al [36] for instruction-
following tasks using a 52K dataset consisting of instructions
and corresponding text responses. We include Alpaca models
in order to investigate whether this instruction fine-tuning
step might make the models more adept at data augmentation
tasks. All of the models used in our study were sourced from
Huggingface’s library.
LLMs for Classification
Robustly Optimized BERT Pretraining Approach (RoB-
ERTa), XLNet, and DistilBERT (Distilled BERT) are all
LLMs that have been pretrained on a large corpus of text
data. They can be fine-tuned for a variety of tasks, including
text classification, natural language inference, and question
answering.

RoBERTa stands for “Robustly Optimized BERT
Pretraining Approach” [37]. It is a BERT-based model that
has been trained on a larger corpus of text and with more
training steps than the original BERT model, with a modified
training objective. This makes RoBERTa more accurate than
the original BERT on a variety of tasks.

XLNet [38] is a transformer-based model that has been
trained on a corpus of text that has been masked and shuffled.
This makes XLNet more robust to noise and errors in the
training data than other LLMs. While both XLNet and
RoBERTa are transformer-based language models, the key
difference is in their training methods. RoBERTa is a variant
of BERT using dynamic masking and longer training on
larger amounts of data. In contrast, XLNet uses a permuta-
tion-based training approach where all permutations of words
in a sentence are considered during prediction, with the goal
of providing a more comprehensive contextual understanding.

DistilBERT [39] is a smaller version of BERT that has
been trained to have the same performance as BERT on a
variety of tasks. DistilBERT is faster and uses less memory
than BERT, making it a more practical choice for many
applications due to its smaller size.

In this paper, we use RoBERTa, XLNet, and Distil-
BERT as text classifiers to test the effectiveness of our
data augmentation. For each generative LLM used for data
augmentation, we use synthetic data to supplement our real
survey responses. Thus, after augmentation, we have a larger
dataset of text documents, each of which is associated with a
label: “resource” or “nonresource” related. The real survey
responses are manually labeled by us. The synthetic data
cases are (written and) labeled by the LLM. This larger
dataset is then used to fine-tune each of the 3 classification
models on the task of determining, for a given piece of text,
whether it is “resource” or “nonresource” related.

We gather augments (synthetically generated text
responses) with different models, temperatures, and training
sets. We chose a binary classification scheme of classifying
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sentences as either “resource”-related, or “non-resource”-rela-
ted. This choice was based on the fact that a substantial
proportion of resilience engineering tools to improve patient
safety (RETIPS) reports were found to be related to resources,
including the availability of necessary resources, such as staff

and equipment. Each time an augment is generated, a new
few-shot learning prompt is generated by randomly sampling
and concatenating 5 examples each of resource-related and
nonresource-related survey responses from our (real) labeled
data, displayed in the format shown in Textbox 1.

Textbox 1. Prompt template used for few-shot prompting to generate synthetic data. “Category” could be either “resource-rela-
ted” or “nonresource-related,” depending on which type of data the model is intended to generate.

### Instruction:
Here are two lists of short text documents, \
“Resource-related“ and “Nonresource-related”. \
They are survey responses by hospital staff \
at the Children’s Hospital of Philadelphia (CHOP).
“Resource-related” is responses on the topic \
“Availability of resources OR Knowing where to find resources.”
“Nonresource-related” is responses that do not have to do with that topic.
Please give me a new example of a short text document that would belong \
in the “{category}” category.
Please don’t copy or paraphrase the text documents in the \
input lists I give you; instead, come up with your own new example \
that would belong in the “{category}” list.
### Input:
{other_category}:{other_category_examples}
{category}:{category_examples}
### Response:
{category}:
1.

After the synthetic data have been generated, it is filtered
to retain only those model outputs that include alphabetic
characters, since in some cases the model returns an empty
output or simply a continuation of the numerical list begun
by the “1.” at the end of the prompt (eg, “2. 3. 4. 5.”)
These problems were especially common at low tempera-
tures (0.1 and 0.3), leading us to exclude those temperatures

from further consideration. For each tested combination of
text-generating LLM, classifier LLM, and temperature, the
filtered augments from the text-generating LLM at that
temperature are combined with the real labeled data and used
to fine-tune the classifier LLM, which is then evaluated on a
hold-out set of real labeled data. Examples of generated data
are shown in Table 1.

Table 1. Examples of real data and synthetic data from each text-generating large language model.
Model Responses
Real data 1. How quickly the world changed...I remember the work and practice pre-COVID and can’t believe how quickly we went to

working remotely and virtually. I was also surprised at how adaptable we really are...we think people are resistant to change
but people can change incredibly swiftly wen the world changes and they need to adapt. I was also surprised to learn that
there are so many online telemeeting platforms...it is routine to oscillate between 3‐4 programs in sequential meetings.

2. I believe overall we did exceptionally well. PPEa availability and consistency across the enterprise would be an area I think
we could improve upon.

3. usage of ppe
4. Virtual conferencing improved our conference participation and virtual review of imaging with referring clinicians using

BlueJeans business Skype or FaceTime improved patient Care and physician collaboration. Unfortunately the hospital
doesn’t have business Skype installed on hospital computers just on lab tops. There needs to be a uniform hospital wide
platform.

5. Working remotely required an adjustment in how I communicated about everything. The demands of the pandemic required
an adjustment in priorities which put everything on hold except for COVID related work and it required a level of teamwork
that did not exist pre-COVID. From a personal coping standpoint I had to “schedule” time away from my computer each day
to eat lunch and take a walk.

LLaMA-7Bb 1. I appreciate the ability to work from home and the support that was provided from my department. I did miss the interaction
with coworkers but the ability to work from home was worth it. I was able to keep up with my work and the department was
able to

2. I am not aware of the term “telemeeting platforms” but I believe I could answer this question. I am not sure if I was surprised
by the need to adapt or the speed at which we adapted. I think we were all expecting the need for changes and adapt

3. It was a challenging time for our department as we did not have enough PPE for everyone and we had to ration supplies for
the most essential staff. We were able to support our staff and be very open and fluid with how things were evolving.
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Model Responses

4. The ability to go to the bathroom and not have to worry about getting someone else sick
5. Changes in Policies and procedures having all the PPE needed communication with all staff AWA leadership was helpful

and tranparent
LLaMA-30B 1. In the beginning working AWAc was an adjustment but once I was allowed to bring home my docking station and 2

monitors it was just like working in the office with little or no interruptions. My doctors I supported and I kept in constant
contact through phone call

2. We had a lot of staff on site so we could provide a good flow of patients and care.
3. In the beginning working AWA was an adjustment but once I was allowed to bring home my docking station and 2 monitors

it was just like working in the office with little or no interruptions.
4. I am confident that I can enter the building safely and that I can maintain the safety of staff, patients and families. Constant

communications with the changes is helpful. It is also good that I can look in one place to refresh on any of the topics.
5. I was surprised how quickly we went to working remotely and virtually.

Alpaca-7B 1. I was surprised at how quickly the world changed from in-person interactions to virtual ones. I also didn’t realize how
adaptable people could be in terms of adjusting to the new way of working. I was also surprised to learn about the different
online telemeeting platforms that are

2. Not having to share Ascom phones and not having an office adjacent to patient care areas.
3. Followed protocols put in place and used PPE and hand sanitizer and bought my own when I felt uncomfortable with there

maybe not being enough or “the right kind” for me.
4. How quickly the world changed...I remember the work and practice pre-COVID and can’t believe how quickly we went to

working remotely and virtually.
5. The hospital’s ability to partner with other departments to obtain the supplies and resources needed to ensure AWA roles

were fully functional.
Alpaca-30B 1. As a manager, I am grateful for the availability of resources in the workplace. We have a well-stocked supply of PPE

and other equipment that we need to do our jobs effectively. Additionally, we have access to a wide range of educational
materials and training opportunities.

2. The availability of clinical information and resources were limited during the pandemic, but we were able to navigate
through this challenge by establishing a robust telemedicine platform that allowed for remote consultation and collaboration
with our colleagues.

3. Ensuring that all staff members are aware of the available resources and are able to easily access them is crucial for
maintaining patient safety and reducing stress levels in the workplace.

4. The biggest adjustment for me was how to handle the stress of working with a reduced staff and how to prioritize my
workload.

5. The CHOPd website and intranet were helpful in providing information about the availability of resources and where to find
them.

aPPE: personal protective equipment.
bLLaMA: Large Language Model Meta AI.
cAWA: alternative work arrangements.
dCHOP: Children’s Hospital of Philadelphia.

Our methodology fits within an envisioned framework
represented in Figure 1. Using data from RETIPS and
similar self-reported narratives from frontline staff, LLMs
with data augmentation will result in a corpus of scenarios.
Human stakeholders (eg, educators) can interact with LLMs
to compare models, change temperature, and make other
adjustments, based on the results, in an iterative manner
until the quality and representativeness of augmented data are

deemed satisfactory. These scenarios can be used for a variety
of purposes in medical education, including quality and safety
analysis, creating content for personalized study, and more.
Based on their effectiveness in the training, including student
and instructor feedback, the LLMs can be further fine-tuned
for improvements. The work described here represents a
part of this framework, focusing on the development and
evaluation of LLMs for data augmentation.

Figure 1. A framework for long-term implementation of LLMs for medical education using RETIPS and similar self-reported data. DistilBERT:
Distilled BERT; LLaMA: Large Language Model Meta AI; LLM: large language model; RETIPS: resilience engineering tool to improve patient
safety; RoBERTa: Robustly Optimized BERT Pretraining Approach.
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Results
We analyze the performance of 4 distinct LLMs—
LLaMA-7B, LLaMA-30B, Alpaca-7B, and Alpaca-30B—for
the purpose of data augmentation. The goal of the aug-
mentation was to increase the performance of downstream
classifiers on the task of matching human labelers’ categori-
zation of the text data as “resource” or “nonresource” related.
We thus evaluate the quality of the resulting data augmen-
tation by adding the synthetic data from these LLMs to
the data used to train 3 classifiers: DistilBERT, RoBERTa,
and XLNet. We repeat this analysis for 6 different augmen-
tation “temperature” settings ranging from 0.5 to 1.5. The
performance of each model-classifier-temperature combina-
tion is assessed based on the area under the receiver operating
characteristic (AUC) curve, using a holdout set of human-
labeled data.

The overall best-performing combination of LLM,
temperature, classifier, and number of augments is LLaMA
7B at temperature 0.7 using RoBERTa with 100 augments,
with an average AUC of 0.87 (SD 0.02: 1). In addition
to achieving the highest absolute performance, the data
augmentation is also most beneficial in this case—this
augmentation yields the greatest improvement in AUC with
respect to the baseline performance of that classifier model
with no data augmentation. The baseline performance of
each classifier along with optimal data augmentation for
each text-generating LLM is shown in Table 2. Note that
the fine-tuned Alpaca models do not outperform the LLaMA
models upon which they are based, indicating that instruction-
finetuning is not necessary for this data augmentation task.

Table 2. Comparison of classifier performance under augmentation by each text-generating large language model (LLM), alongside base perform-
ance of the classifier with no augmentation. Each entry gives the mean classifier area under the receiver operating characteristic curve (SD 1), the
optimal temperature for text generation.
LLM RoBERTaa, mean (SD) XLNet, mean (SD) DistilBERTb, mean (SD)
LLaMA-7B 0.87 (0.02/0.7/100) 0.84 (0.04/0.7/100) 0.83 (0.02/0.7/100)
LLaMA-30B 0.87 (0.03/0.5/100) 0.84 (0.03/0.5/100) 0.85 (0.06/1.5/500)
Alpaca-30B 0.86 (0.06/0.7/100) 0.84 (0.05/1.3/250) 0.81 (0.06/1.3/250)
Alpaca-7B 0.86 (0.06/0.7/100) 0.84 (0.05/1.1/250) 0.82 (0.05/0.7/100)
Baseline 0.80 (0.06) 0.79 (0.06) 0.79 (0.04)

aRoBERTa: Robustly Optimized BERT Pretraining Approach.
bDistilBERT: Distilled BERT.

For each combination of LLM and classifier, we also fit a
linear regression model to explore the relationship between
the number of synthetic data points included in the training
dataset and the resulting classifier performance as measured
by AUC. Notably, DistilBERT emerges as the classifier
benefitting most often from data augmentation. In terms of
the temperature setting, most of the successful models used a

temperature of 0.7. In Figure 2, we display the comparative
performance of the LLaMA 7B and Alpaca 7B models, both
using the DistilBERT classifier at a temperature setting of
0.7. These graphical representations underscore the beneficial
impact of data augmentation on the AUC performance of
these specific model-classifier configurations.

Figure 2. Linear fit to DistilBERT (Distilled BERT) model performance (measured as area under the receiver operating characteristic curve) as a
function of the number of augments included in the training data (all generated at temperature 0.7).
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Discussion
Principal Findings
In this work, our emphasis is on leveraging open-source
language models that strike a balance between computational
performance and accessibility for researchers. We therefore
set a parameter ceiling of 30 billion parameters for several
reasons. First, maintaining this threshold ensures that the
models in question can run on consumer-level hardware
commonly available to average researchers without the need
for prohibitive investment in specialized equipment. Second,
this approach aligns with our goal to propose methods
feasible for environments where privacy and cost consider-
ations limit the use of third-party cloud-based computing
services, as relying on external infrastructures (such as
OpenAI’s services) could elevate privacy risks and regulatory
complexity. Using consumer-level hardware, as opposed to
cloud-based services, significantly mitigates the risk of data
breaches or unauthorized access. Furthermore, the choice to
avoid third-party computational services also avoids potential
issues related to data sovereignty and control, which could
arise when data leaves the institution’s local environment.
By strictly using in-house resources that operate within the
confines of consumer-level capabilities, our methodology
facilitates stringent data custody and integrity controls.

LLMs such as OpenAI’s GPT-3.5 and GPT-4, or the
openly accessible 176 billion-parameter BLOOM, indeed
offer more powerful capabilities, but their deployment
would threaten the objective of presenting a methodology
that is both privacy-aware and broadly implementable. We
contend that models up to 30 billion parameters offer a
sweet spot, considering these constraints, without signifi-
cantly compromising the efficacy of the data augmentation
process. By imposing a limit of 30 billion parameters, we
aim to demonstrate that effective data augmentation for
small-scale text classification tasks in the health care sector
can be achieved without resorting to the most computation-
ally demanding or privacy-compromising technology. This
parameter threshold also allows for an equitable comparison
of language models, ensuring that our results are relevant
to a wide range of researchers, including those who might
be limited by resource constraints. Our research thus serves
to bridge the gap typically present in medical informatics
research, where smaller institutions or individual research-
ers may not have access to the same level of computa-
tional resources as their larger counterparts. Additionally, this
study sheds light on the possibilities and limitations inher-
ent to working within such constraints, providing a valuable
reference for future research endeavors seeking a similar
balance between model size, privacy, cost, and performance.
Limitations and Future Work
One of the primary constraints of this work is the limited size
of the RETIPS dataset. The small sample size (58 responses)
potentially affects the reliability and generalizability of the
study to other cases where larger data are available. However,
it should be noted that the data from RETIPS were tightly
focused on a narrow set of themes. This may be beneficial to

the quality of augmented data, when compared with a dataset
that is thematically more “scattered” or heterogenous. Larger
data would likely improve the data augmentation quality but
would potentially limit the benefits to be derived from data
augmentation. Since data augmentation is of greatest value
when working with small datasets, our small data size helps
explore this problem space.

Aside from data size, another limitation of this work is
that our data are exclusively collected from RETIPS surveys
administered to radiology staff at a single hospital. Though
this specificity is necessary for the research’s objectives, the
models’ performance may vary in other health care domains,
and in domains outside of medicine.

As a future step for this research, it would be beneficial
to perform similar studies using larger and more diverse
datasets. Larger datasets could provide a richer, more diverse
range of training data, potentially leading to correspondingly
more diverse synthetic data. Such diversity could improve the
performance of the downstream classifiers.

Future research should also consider experimenting with
different LLMs for data augmentation. Text-generation LLMs
are rapidly evolving, particularly in the area of making large
and powerful LLMs accessible on consumer-grade computer
hardware [40]. Newer models often come with architectural
and training improvements that could potentially enhance
synthetic data generation quality.

In this work, we explore different LLM text generation
temperature settings and the resulting impact on synthetic
data quality. A more extensive hyperparameter tuning of the
language models and classifiers may yield further improve-
ments in their performance. This could be a fruitful area for
further investigation.

The limitations faced by this work are those that inherently
attach to working with small data in a highly privacy-con-
scious environment with accessible AI tools. Since this is a
problem space occupied by many researchers and practition-
ers in the health care domain, we hope that our results are
able to provide insight into how AI tools can be used in such
settings.
Conclusion
This study provides an exploration and practical demonstra-
tion of the application of LLMs for data augmentation in the
context of health care. We specifically focused on the use
of open-source LLMs, namely, LLaMA and Alpaca models,
to mitigate the challenge of limited training data in a text
classification task related to hospital staff surveys.

Our findings demonstrate the potential effectiveness of
using LLMs to generate synthetic survey responses, thereby
increasing the diversity and size of the training dataset
and improving the performance of models trained on the
augmented dataset for tasks such as text classification.
However, the effectiveness of the data augmentation process
can vary based on certain factors such as the specific LLM
used, the selected parameters such as the temperature setting,
and the downstream classifier applied.
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This study provides preliminary evidence that open-source
LLMs can improve the performance of text classifiers for
small datasets in health care contexts when privacy or cost
considerations prevent the use of closed-source third-party
services such as those offered by OpenAI. These results
pave the way for future research to further investigate and
refine the use of LLMs in tasks like text classification, data
augmentation, and other medical education and operational
applications.

This research serves as an initial leap towards exploit-
ing the promising capabilities of LLMs in medical appli-
cations while being mindful of privacy, ethical concerns,
and constraints associated with this field. By establishing a
proof-of-concept for the use of open-source LLMs in health
care settings, this study opens avenues for broader explo-
ration of LLMs’ potential to tackle numerous challenges
faced by medical practitioners, educators, and administra-
tors. Future research should expand on our work by explor-
ing more complex datasets, experimenting with different
hyperparameters for a wider variety of LLMs, and developing

procedures to systematically craft and evaluate prompts to
optimize model output.

This study contributes to a burgeoning field of research
exploring applications of AI in health care and medical
education. Our exploration of data augmentation using
open-source LLMs presents potential pathways for improv-
ing processes such as incident reporting, resident evalua-
tion, clinical vignette development, and other text-based
processes relevant to medical education. This research will
hopefully encourage additional exploration into the ethical
and judicious application of LLMs and other AI technologies
in health care.

As AI technologies continue to evolve and become more
sophisticated, constant re-evaluation and updates to our
methods will be essential. Therefore, active engagement from
all stakeholders in the medical field, including frontline health
care workers, researchers, educators, and policy makers, is
crucial in making the most of these advancements for the
betterment of patient care and safety.
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