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Abstract

Large-scale medical data sets are vital for hands-on education in health data science but are often inaccessible due to privacy
concerns. Addressing this gap, we developed the Health Gym project, a free and open-source platform designed to generate
synthetic health data sets applicable to various areas of data science education, including machine learning, data visualization,
and traditional statistical models. Initially, we generated 3 synthetic data sets for sepsis, acute hypotension, and antiretroviral
therapy for HIV infection. This paper discusses the educational applications of Health Gym’s synthetic data sets. We illustrate
this through their use in postgraduate health data science courses delivered by the University of New South Wales, Australia, and
a Datathon event, involving academics, students, clinicians, and local health district professionals. We also include adaptable
worked examples using our synthetic data sets, designed to enrich hands-on tutorial and workshop experiences. Although we
highlight the potential of these data sets in advancing data science education and health care artificial intelligence, we also
emphasize the need for continued research into the inherent limitations of synthetic data.
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Introduction

Clinical data gathered from health care institutions are crucial
for enhancing health care quality [1-3]. These data sets can feed
into artificial intelligence (AI) and machine learning (ML)
models to refine patient prognosis [4,5], diagnosis [6,7], and

treatment optimization [8]. Furthermore, statistical models
applied to these data sets can uncover association and causal
paths [9]. However, stringent privacy regulations protecting
patient confidentiality often hamper the prompt availability of
these data sets for research and educational usage [10-14].
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Gaining access to clinical and health care data sets is a critical
aspect of health data science education. This exposure provides
trainees with invaluable practical experience, offering profound
insights into the complexities of real-world health care scenarios
[15]. However, obtaining access to these sensitive data sets is
a challenging endeavor—often involving a lengthy process of
securing ethics approvals, institutional support, and data
clearance [16]. Moreover, the approved users may be required
to work on-site under the direct supervision of the data custodian
to prevent data leakage [17]. These rigorous security measures,
while essential for patient confidentiality, can hamper scalable
training of future health data scientists.

During this era of big data, with a soaring demand for skilled
health data scientists [18,19], synthetic data sets can bridge the
gap between analytical skills and health context comprehension.
As Kolaczyk et al [20] astutely asserted, “Theory informs
principle, and principle informs practice; practice, in turn,
informs theory.”

A promising solution to the lack of clinical and health care data
is the utilization of generative AI to generate synthetic data sets.
These data sets provide controlled, context-specific learning
experiences that parallel real-world situations while maintaining
patient privacy. The Health Gym project exemplifies this
approach [21]. Leveraging generative adversarial networks
(GANs) [22-24], Health Gym creates synthetic medical data
sets, establishing a secure yet realistic platform for trainees to
hone their health data analytical skills. The data sets, covering
key health conditions such as sepsis, acute hypotension, and
antiretroviral therapy (ART) for HIV infection, can be accessed
at [25]. The project’s open-source code is also available on
GitHub at [26] under the MIT License [27].

As an integral part of the Master of Science in Health Data
Science Program at the University of New South Wales
(UNSW), Australia [28] and a Datathon event [29], the Health
Gym synthetic data sets have proven their versatility and
effectiveness in enriching health care education. They are freely
accessible to the wider research and education community while
complying with stringent security standards such as those
specified by Health Canada [30] and the European Medicines
Agency [31], thus minimizing patient data disclosure risks.

In this viewpoint paper, we discuss the application of Health
Gym synthetic data sets, their role in health data science
education, and their potential in nurturing proficient health data
scientists. We provide adaptable worked examples (accessible
through Section A in Multimedia Appendix 1) by using our
synthetic data sets, crafted to enrich hands-on tutorial and
workshop experiences. We underline the importance of
acknowledging the limitations of synthetic data to ensure their
valid use in the creation of statistical models and AI applications
in health care and the enhancement of health care education.
Although synthetic data sets cannot supersede real-world data,
they are a vital tool for training future health data scientists and
supporting data-driven innovative approaches in health care.

Ethics Approval
We applied GANs to longitudinal data extracted from the
MIMIC-III (Medical Information Mart for Intensive Care) [32]
and the EuResist [33] databases to generate our synthetic data
sets. This study was approved by the UNSW’s human research
ethics committee (application HC210661). For patients in
MIMIC-III, requirement for individual consent was waived
because the project did not impact clinical care and all protected
health information was deidentified [32]. For people in the
EuResist integrated database, all data providers obtained
informed consent for the execution of retrospective studies and
inclusion in merged cohorts [34].

Health Gym
The currently available synthetic data sets for the Health Gym
project were derived from MIMIC-III [32] and EuResist [33]
databases. MIMIC-III is a comprehensive database of
anonymized health data associated with patients admitted to the
critical care units of the Beth Israel Deaconess Medical Center,
including data on laboratory tests, procedures, and medications.
The EuResist network aims to develop a decision support system
to optimize ART for individuals living with HIV, leveraging
extensive clinical and virological data.

After applying published selection or exclusion criteria, we
extracted relevant data from databases that could facilitate the
development of patient care algorithms. These data sets,
focusing on sepsis, acute hypotension, and ART for HIV, served
as the basis for our synthetic data creation. The synthetic data
generation employed in the Health Gym was accomplished
using GANs. The GAN model, as shown in Figure 1, consists
of 2 primary components: a generator and a discriminator. The
process starts by sampling real patient records (depicted in pink)
and employing the generator to create synthetic patient records
(depicted in violet). Both the real and synthetic records are then
forwarded to the discriminator network, which is tasked with
differentiating the genuine data from the counterfeit. Both
networks are trained in an adversarial process—the generator
is updated to create more realistic records, while the
discriminator is refined to identify generated records more
accurately. As a result, the quality of the synthetic data is
progressively enhanced, and the synthetic patient records
become increasingly representative of the ground truth. The
iterative training concludes when the discriminator can no longer
reliably distinguish the synthetic records from the real records.
Refer to more details in Kuo et al [21].

Leveraging generative AI, Health Gym provides highly authentic
clinical data sets, enriching health care education. Each data set
undergoes rigorous quality assessment and security verification
(detailed in Section B of Multimedia Appendix 1). These
synthetic data sets foster engaging learning experiences, aiding
educators in developing tailored educational strategies. The
following sections will illuminate the application of Health Gym
in university-level courses, exemplified through ART for HIV
data set.
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Figure 1. Generative adversarial network setup.

Synthetic ART for HIV Data Set
The Health Gym data sets contain mixed-type longitudinal data,
including numerical, binary, and categorical variables. They
encompass patient demographics, vital signs measurements,
and pathology results. The data sets hence reflect the
complexities of real-life data, thereby making them suitable for
training health data scientists in university courses. This paper
will primarily delve into the application of synthetic data in
health care education focusing on the ART for HIV data set.
Readers interested in the sepsis and the acute hypotension data
sets should refer to Section C in Multimedia Appendix 1.

Data Set Description
Our synthetic HIV data set, informed by the selection or
exclusion criteria proposed by Parbhoo et al [35] and drawn
from the EuResist database, targets individuals living with HIV
who initiated therapy after 2015 per the World Health
Organization’s guidelines [36]. ART for HIV typically includes
a mix of 3 or more antiretroviral agents from at least 2 distinct
medication classes. The dynamism of ART lies in its frequent
regimen modifications resulting from various circumstances
such as treatment failure due to poor adherence or viral
resistance, intolerance to ART, clinical events such as pregnancy
or coinfections, or optimization of therapy to support better
adherence, reduce drug-drug interactions, maximize ART
response, or prevent the emergence of drug-resistant viral strains
[36,37].

In addition to ART information, the data set encompasses vital
indicators of ART success and disease progression, namely,
viral load (VL) and CD4 cell count. Successful ART is often
indicated by VL below 1000 copies/mL, while a CD4 cell count

exceeding 500 cells/mm3 signifies healthy immunological status
[36]. The complex interactions of these elements in our data set
create a rich learning platform for health data science education.

Table 1 encapsulates the data set’s 3 numeric, 5 binary, and 5
categorical variables. Numeric variables include VL, CD4 cell

count, and relative CD4 laboratory test results. Treatment
regimens follow those of Tang et al [38], breaking down the
ART regimen into several parts. The data set includes 50
combinations of 21 unique medications. The antiretroviral
medication classes are nucleoside/nucleotide reverse
transcriptase inhibitors (NRTIs), nonnucleoside reverse
transcriptase inhibitors (NNRTIs), integrase inhibitors (INIs),
protease inhibitors (PIs), and pharmacokinetic enhancers
(pk-En). We deconstructed the ART regimen into its constituent
parts: base drug combination (base drug combo), complimentary
INIs (comp INIs), comp NNRTIs, extra PIs, and extra pk-En.
The base drug combo primarily consists of NRTIs, with
inclusion of other antiretroviral classes as well.

Recognizing the notable amount of missing data in the original
EuResist database, we added a suffix (M) to variables to denote
whether measurements were recorded at specific time points.
In the authentic data set, measurements were reported at 24.27%
(129,835/534,960) for VL (measured), 22.21%
(118,815/534,960) for CD4 (measured), and 85.13%
(455,411/534,960) for drug (measured). The absence of some
CD4 and VL records may be attributable to specific clinical
practices and the frequency of test requests [39-42]. For instance,
it is common for clinicians to discontinue requesting a CD4 cell

count if the previous result exceeded 500 cells/mm3 and the
individual had an undetectable VL. Similarly, VL is typically
measured in the first 3 months, at 6 months, 12 months, and
then annually.

Constructed using the GAN model developed by Kuo et al [43],
this data set comprises 8916 synthetic patients tracked over 60
months, resulting in 534,960 records (8916 × 60). Figure 2
showcases a sample generated by the code in Figure 3 [44,45].
Each record features 15 columns, including a patient identifier,
a time point, and 13 ARTs for HIV variables highlighted in
Table 1. The synthetic data sets can be freely accessed in [46]
and [47] on Figshare, a digital platform for research output
sharing.
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Table 1. The variables of antiretroviral therapy in the HIV data set.

Valid categorical optionsUnitData typeVariable name

N/Aacopies/mLnumericViral load (VL)

N/Acells/µLnumericAbsolute count for CD4 (CD4)

N/Acells/µLnumericRelative count for CD4 (Rel CD4)

Male, FemaleN/AbinaryGender

Asian, African, Caucasian, otherN/AcategoricalEthnicity (Ethnic)

FTCb + TDFc, 3TCd + ABCe, FTC + TAFf, DRVg

+ FTC + TDF, FTC + RTVBh + TDF, other

N/AcategoricalBase drug combination (Base drug combo)

DTGi, RALj, EVGk, not appliedN/AcategoricalComplementary integrase inhibitor (Comp INI)

NVPl, EFVm, RPVn, not appliedN/AcategoricalComplementary nonnucleoside reverse transcriptase inhibitor
(Comp NNRTI)

DRV, RTVB, LPVo, RTVp, ATVq, not appliedN/AcategoricalExtra protease inhibitor (Extra PI)

False, TrueN/AbinaryExtra pharmacokinetic enhancer (Extra pk-En)

False, TrueN/AbinaryViral load measured (VL) (M)r

False, TrueN/AbinaryCD4 (M)

False, TrueN/AbinaryDrug recorded (M)

aN/A: not applicable.
bFTC: emtricitabine.
cTDF: tenofovir disoproxil fumarate.
d3TC: lamivudine.
eABC: abacavir.
fTAF: tenofovir alafenamide.
gDRV: darunavir.
hRTVB: ritonavir.
iDTG: dolutegravir.
jRAL: raltegravir.
kEVG: elvitegravir.
lNVP: nevirapine.
mEFV: efavirenz.
nRPV: rilpivirine.
oLPV: lopinavir.
pRTV: ritonavir.
qATV: atazanavir.
r(M): measured.
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Figure 2. Inspecting the antiretroviral therapy for an HIV data set (output of the code in Figure 3).

Figure 3. Code in Python for generating the output shown in Figure 2. This code uses pandas [44] and NumPy [45]. Base drug combo: base drug
combination; comp INI: complementary integrase inhibitor; comp NNRTI: complementary nonnucleoside reverse transcriptase inhibitor; PI: protease
inhibitor; pk-En: pharmacokinetic enhancer; VL: viral load.

Applications and Case Studies
This section highlights the use of our synthetic ART for HIV
data set in a collaborative Datathon event and as an effective
teaching tool at UNSW for medical education.

Center for Big Data Research in Health Data Science
Datathon
The synthetic data set for ART for HIV was a central component
of the UNSW Center for Big Data Research in Health Datathon
[48], an event merging theoretical learning with practical
application. The Datathon was an enriching exercise in
multidisciplinary collaboration. The event involved 6 teams,
with a total of 24 participants, offering a tangible experience in
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data analysis. The student teams were supported by a group of
mentors—a blend of data scientists, clinicians, health
professionals, and government health informatics specialists
from a local health district in Sydney, Australia [49]. The data
scientists and the panel of authors of the Health Gym project
(ie, Kuo et al [21]) elaborated on the technical aspects and
navigated the participants through the intricacies of data
analysis, including the assumptions we made to use the data
(eg, time 0 corresponded to the date of ART initiation, the
laboratory tests occurred before modifications in therapy).
Meanwhile, clinicians and health professionals provided their
expertise to guide students toward meaningful research questions
(eg, discussing VL and CD4 count monitoring, drug-drug
interactions, and metabolic toxicity [50]). Government health
informaticians, experienced in electronic medical records and
real-world population health application and impact, evaluated
the usefulness of the students’ findings.

This collaborative effort facilitated a comprehensive learning
experience, encompassing the development of analytical models,
data visualization, and effective communication of research
outcomes. Using our synthetic data sets, participants gained
valuable insights into working with data sets that emulate
real-world health scenarios, thereby providing a bridge between
theoretical academia and practical execution.

We summarize the findings of the 2 participating teams below.
Detailed reports for Team 1 and Team 2 can be found in Section
D and Section E of Multimedia Appendix 1, respectively. In
addition, the associated codes for the 2 teams can be found in
Section A of Multimedia Appendix 1.

Findings of Team 1
Team 1 investigated the effectiveness of medications,
categorized by antiretroviral class, in achieving HIV
suppression. Utilizing survival analysis, they assessed the time
between the initiation of ART to the first occurrence of viral
suppression, defined as VL below 1000 copies/mL [36]. They
also assessed the time to CD4 cell count exceeding 500

cells/mm3 [51], which indicates a healthy immunological status.

With Cox proportional hazards models [52] featuring
time-varying covariates, the team identified particular
antiretroviral agents associated with viral suppression. These
findings were purely associative due to data set limitations,
which did not account for factors such as age, socioeconomic
status, comorbidities, and concurrent medications (of other
illnesses).

Findings of Team 2
Team 2 focused on predicting the necessity of altering an
individual’s ART regimen over a 5-year time span, factoring
in disease flare-ups, resistance, or side effects. They formulated
a “sliding search” function that generated individual records for
each 12-month period, with predictions for antiretroviral
modification and adherence to therapy in the subsequent year
by using neural networks. The team’s methodology produced
promising results, with an accuracy rate of 78% in predicting
antiretroviral modification and 93% in predicting adherence to
therapy. The algorithm detected trends in CD4 and VL results
across the 12-month periods, which appeared to be the key

predictive features. In addition, the team suggested that there
could be potential benefits from exploring recurrent neural
networks (eg, long short-term memory [53]).

Serving as UNSW Coursework Materials
Beyond their utility in the Datathon, our synthetic data sets
contribute to UNSW courses in the Master of Science in Health
Data Science Program [54], namely, HDAT9800 Visualization
& Communication and HDAT9510 Machine Learning II.

HDAT9800 teaches future health data scientists the skills to
visually communicate complex data effectively to diverse
audiences. The course emphasizes the significance of clear data
visualization and advocates for transparency and reproducibility
in scientific work. It employs R [55] and Python [56] to
demonstrate best practices in data analysis and visualization.
Our synthetic data sets provide rich resources to enhance the
learning in this setting. For instance, Marchesi et al [57] used
our data sets to present patient states via t-distributed stochastic
neighbor embedding visualization techniques [58].

Meanwhile, HDAT9510 explores advanced modern ML
algorithms and methods such as convolutional neural networks
[59], autoencoders [60], and reinforcement learning (RL) [61].
As the synthetic data sets consist of time-series variables,
students can develop both feedforward and recurrent neural
networks. See example models built using our data set in
Marchesi et al [57] with recurrent neural networks and even
decision trees [62] and hidden Markov models [63], as in a
similar data set suggested by Wu et al [64]. Furthermore, with
the presence of nonnumeric variables, students can learn about
embedding [65]—transforming nonnumeric levels into
real-valued vectors so that similar levels that are closer in the
vector space carry more analogous meaning. The presence of
missing data in the synthetic data sets also encourages students
to formulate plausible assumptions about the structure of the
clinical data set prior to data modelling.

We provide 3 adaptable worked examples using our ART for
HIV data set, suitable for workshops and lectures. The associated
codes for the worked examples can be found in Section A of
Multimedia Appendix 1. Our synthetic data set supports a
variety of student engagements, from understanding complex
data structures to developing advanced RL algorithms for
optimizing clinical interventions. Moreover, the low patient
disclosure risk associated with our data sets (refer to Section B
in Multimedia Appendix 1) eliminates the need for ethics
approval [66]. This makes these data sets ideal for a range of
settings—from small seminars to larger lecture groups.

Worked Example 1
The first exercise, focused on data visualization using Python,
compares VL trends over time among patients who commenced
their ART with different base drug combos, against the general
trend in all patients. The results of our worked example are
depicted in Figure 4.

This multifaceted exercise requires students to create sub–data
sets based on specific starting base drug combos (ie, FTC +
TDF [emtricitabine + tenofovir disoproxil fumarate] and 3TC
+ ABC [lamivudine + abacavir]), extract data for defined
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periods, and familiarize themselves with box and violin plots
[67]. They are also tasked with organizing the visual data as
side-by-side plots.

Through this exercise, students will understand the limitations
of box plots, which cannot visualize underlying data
distributions. They will learn about the additional insights

provided by advanced plotting techniques such as violin plots.
In addition, students will note that people who start with FTC
+ TDF and those who start with 3TC + ABC display similar
patterns as the overall ART for HIV cohort. The overlap of the
interquartile ranges across all box plots indicates a consistent
behavior.

Figure 4. Viral load distribution. Subplot (A) shows a box plot comparison of viral load across base drug combinations across time, and subplot (B)
shows a violin plot comparison of viral load across base drug combinations across time. Grey indicates all patients, red indicates those initiating treatment
with FTC + TDF (emtricitabine + tenofovir disoproxil fumarate), and blue indicates those initiating treatment with 3TC + ABC (lamivudine + abacavir).
VL: viral load.

Worked Example 2
The second exercise delves into survival analysis using R [55],
building on insights from the initial data visualization task. The
exercise continues to compare results among people starting
with the base drug combo of FTC + TDF and those initiating
with the base drug combo of 3TC + ABC. The goal is to estimate
the time necessary for a person on ART to successfully suppress
their VL. The results of our worked example are depicted in
Figure 5.

This task proves to be more complex than the first, requiring
HIV domain knowledge, such as an understanding that a
reasonable threshold for ART in HIV treatment is 1000
copies/mL [36]. This threshold indicates slowed viral replication

and immune system damage. Thus, students should select
patients who commence ART with VL above 1000 copies/mL
(ie, not experiencing the outcome of interest at baseline).

Creating an appropriate data set for survival analysis is key, as
is pinpointing when each patient’s VL first drops to or below
1000 copies/mL. In addition, students need to grasp the concept
of right censoring [68] and utilize Kaplan-Meier curves [69]
for time-to-event estimations. This offers an opportunity to
engage with the influential survival package [70] in the R
language. Upon examining the results in Figure 5, students will
note no significant differences in the timing of VL suppression
between people who started with the base drug combo of FTC
+ TDF and those who initiated with the base drug combo of
3TC + ABC.
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Figure 5. Time-to-event estimation of viral load suppression for viral load lower than 1000 copies/mL. Red indicates those initiating treatment with
FTC + TDF (emtricitabine + tenofovir disoproxil fumarate) and blue for those initiating treatment with 3TC + ABC (lamivudine + abacavir).

Worked Example 3
The third exercise immerses students in the process of
developing an RL agent using Python. RL is a type of ML that
learns an evidence-based policy to connect states (the current
scenario) to actions (the potential responses to that scenario).
In the context of our HIV treatment example, states refer to the
representation of the patient’s current health status and
medication history, while action refers to the selection of
medication to use in response to each state.

The RL agent selects an action based on a policy that optimizes
for maximum cumulative rewards, even as environments evolve.
This approach has particular relevance to health care. Clinicians
often need to adapt treatment plans to each patient’s unique
circumstances, and RL can help them to individualize treatment
durations, dosages, or types. For example, they may alter the
regimen, class, or specific agents of medication to better serve
the patient’s needs. The outcomes of our example are visualized
in Figure 6. This exercise highlights the potential of RL to
enhance patient care through personalization—an aspect that is
becoming increasingly important in today’s medical landscape.

This complex exercise is designed for advanced students, posing
challenges across multiple dimensions. It commences with data
wrangling, where students scrutinize numeric variable
distributions and evaluate the necessity for transformations such
as rescaling, normalization [71], power transformation [72], or
Box-Cox transformation [73].

In the next stage, students encounter categorical feature
representation for medication regimens, practicing their skills
in implementing embeddings. Advanced students can explore
transfer learning for feature representation [74]. This exercise
also presents real-world challenges, requiring students to handle
mixed-type data progression. During the model fitting phase,
students must employ suitable ML models, distinguishing
between RL method archetypes [75] and considering their
clinical implications.

Data visualization is the next task, encouraging students to
articulate model-derived insights into digestible visuals for a
diverse audience. The concluding phase involves refining
assumptions and model performance, incorporating multiple
tests to identify optimal hyperparameters [76]. Here, students
peek into the “black box” nature of ML and gain an intuition
for effective module combinations [77-79]. This step becomes
critical for causal inference tasks that necessitate rigorous input
data validation [80].

Figure 6 showcases the strategy employed by an RL agent in
HIV therapy. Heatmaps visualize the relative frequencies of
chosen actions (ie, the selected antiretroviral), where each tile
represents a unique action and its frequency as a proportion of
all actions. The example output shows that the RL agent
consistently suggests the EFV + RAL (efavirenz +
raltegravir)—a combination of comp NNRTIs and comp
INIs—4.39% of the time, while never recommending the RPV
+ RAL (rilpivirine + raltegravir) combination. More information
on the steps taken to create the output for this task can be found
in Section F of Multimedia Appendix 1.
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Figure 6. Visualizing the learned reinforcement learning policy. Comp INI: complementary integrase inhibitor; Comp NNRTI: complementary
nonnucleoside reverse transcriptase inhibitor; DTG: dolutegravir; EFV: efavirenz; EVG: elvitegravir; NVP: nevirapine; RAL: raltegravir; RPV: rilpivirine.

Discussion

This paper demonstrates the transformative potential of synthetic
health data sets in health care education, especially in the
evolving context of generative AI integration. These data sets
provide a realistic representation of real-world health data
complexities while preserving patient confidentiality, facilitating
experiential learning, skills enhancement, and interdisciplinary
collaboration. However, this significant stride toward AI
integration in education is not without challenges, and the
creation of AI models trained on curated quality data sets
emerges as a promising research area.

Despite our best efforts, the Health Gym synthetic data sets
might not fully capture the complexity and diversity of
real-world scenarios. For instance, some critical health
determinants such as socioeconomic status [81] and
comorbidities [82] are missing from the ART for HIV synthetic
data sets. The absence of these factors mirrors the broader issues
concerning data accessibility [83], particularly when it involves
specialized or rare disease information. Furthermore, synthetic
data might overlook uncontrolled variables or confounders
inherent in real-world data [84,85], posing pedagogical
challenges. However, this limitation is not solely attributable
to our methodology. Since the socioeconomic status variable
is not present in the EuResist database, our model lacked the
necessary reference data from the outset.

In the field of health data science, proficient data set
management and curation are essential due to the decentralized
nature of health care data collection. Many entities contribute

to health data, each using their own systems [86]. Privacy laws
such as Australia’s Privacy Act 1988 [87] and the United States’
Health Insurance Portability and Accountability Act [88]
complicate the sharing of data, resulting in a fragmented view
of patient information.

Record linkage techniques [89] such as probabilistic matching
[90] bridge this gap by linking disparate data records, offering
a more comprehensive view of a patient’s health. Nevertheless,
our synthetic data sets, despite their potential, carry limitations
such as the absence of a master linkage key [91], thereby
reducing their applicability in university courses for data
management and curation. Having such linked data sets are also
great for health data science students to test hypotheses on the
effects of comorbidities. Our experiences from the Datathon
suggest that the Health Gym synthetic data sets are best used
for creating algorithms to enhance patient care within specific
disease management paradigms.

Our Health Gym initiative leverages a unique application of
generative AI, differing from those used in emerging AI-assisted
chatbots, which have also shown promise as potent educational
tools. AI chatbots, with their personalized and interactive
responses using large language models, can significantly incite
interest and foster self-directed learning in medical students
[92]. However, advanced AI tools such as OpenAI’s ChatGPT
[93] and Google’s BARD [94] bring with them valid concerns
around precision, reliability, potential misuse, and adherence
to academic integrity [95,96]. In contrast, the synthetic clinical
data sets, the generative product of our Health Gym project,
offer controlled, scenario-specific learning environments that
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closely reflect real-world conditions while preserving patient
privacy.

Access to clinical data sets is integral to health data science
education, but the necessity of maintaining patient
confidentiality can hinder the training of future health data
scientists on a larger scale. This may exacerbate the digital
divide [97,98], which is a prominent challenge in the broader
AI integration into education. As we shift toward AI-driven
educational resources, it is essential to prioritize equitable access
across varied socioeconomic backgrounds. Future research
should evaluate the long-term effects of AI on student learning,
clinical judgment, patient outcomes, and the development of
educational resources for effective AI integration. The secure,
realistic synthetic data sets of Health Gym may provide a
valuable solution, potentially facilitating equal access to
educational materials.

Conclusion
Despite their limitations, the Health Gym synthetic health data
sets have demonstrated their value in educating and training
future health data scientists. Their integration into
interdisciplinary platforms such as Datathon illustrates their
potential in promoting collaborative learning, skills
enhancement, and innovative research. In addition, synthetic
data sets offer a learning platform that balances realistic health
scenario representation with data privacy preservation.

Although we have primarily demonstrated the utility of Health
Gym’s synthetic data sets by using the ART for HIV data set,
we emphasize the importance of the additional acute
hypotension and sepsis data sets that we have developed (see
Section C in Multimedia Appendix 1). These data sets broaden
the scope of medical education by providing insight into
managing illnesses in intensive care units, encompassing a

unique set of measurements and pathology information. As
such, these synthetic data sets offer students an enriched,
realistic learning environment for health data science education,
complementing the HIV data set and furthering the applicability
and versatility of synthetic health data.

The majority of generative ML research is centered on computer
vision [99,100] and, to a lesser extent, natural language
processing [101], leaving clinical health care data relatively
unexplored. This gap suggests a valuable opportunity for future
research, particularly considering that clinical data being
longitudinal, mixed-type time series variables have a
fundamentally different nature. As demonstrated in our prior
studies [21,43,102], we have ascertained that our synthetic data
sets attain a robust level of validity and are readily available to
support both clinical research and medical pedagogy; predictive
models instantiated on our synthetic data sets parallel those of
the original data sets in their characteristics. We will focus our
future work on comparing synthetic data sets created using
various generative ML architectures, for example, GANs,
variational autoencoders [103], diffusion probabilistic models
[102,104], and transformer-based models [105].

GANs, like other ML models, can only optimize according to
predefined optimization functions. Given the current lack of
research on the use of GANs in health care, more utility studies
are necessary to fully comprehend the potential of our synthetic
data sets. We are committed to continuing collaboration with
clinicians and health professionals to better understand the
practical strengths and weaknesses of synthetic data sets,
including how to better evaluate and contain the risk of private
information disclosure. Through these collective efforts, we
aim to improve the quality of synthetic data sets, enhancing
hands-on learning experiences for students in health data
analytics.
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