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Abstract

Background: The potential of artificial intelligence (AI)–based large language models, such as ChatGPT, has gained significant
attention in the medical field. This enthusiasm is driven not only by recent breakthroughs and improved accessibility, but also
by the prospect of democratizing medical knowledge and promoting equitable health care. However, the performance of ChatGPT
is substantially influenced by the input language, and given the growing public trust in this AI tool compared to that in traditional
sources of information, investigating its medical accuracy across different languages is of particular importance.

Objective: This study aimed to compare the performance of GPT-3.5 and GPT-4 with that of medical students on the written
German medical licensing examination.

Methods: To assess GPT-3.5’s and GPT-4's medical proficiency, we used 937 original multiple-choice questions from 3 written
German medical licensing examinations in October 2021, April 2022, and October 2022.

Results: GPT-4 achieved an average score of 85% and ranked in the 92.8th, 99.5th, and 92.6th percentiles among medical
students who took the same examinations in October 2021, April 2022, and October 2022, respectively. This represents a substantial
improvement of 27% compared to GPT-3.5, which only passed 1 out of the 3 examinations. While GPT-3.5 performed well in
psychiatry questions, GPT-4 exhibited strengths in internal medicine and surgery but showed weakness in academic research.

Conclusions: The study results highlight ChatGPT’s remarkable improvement from moderate (GPT-3.5) to high competency
(GPT-4) in answering medical licensing examination questions in German. While GPT-4’s predecessor (GPT-3.5) was imprecise
and inconsistent, it demonstrates considerable potential to improve medical education and patient care, provided that medically
trained users critically evaluate its results. As the replacement of search engines by AI tools seems possible in the future, further
studies with nonprofessional questions are needed to assess the safety and accuracy of ChatGPT for the general population.
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Introduction

Rapid advancements in large language models (LLMs) have
sparked considerable excitement regarding their potential
applications in the medical field [1,2]. One LLM-based

application that has garnered worldwide attention is ChatGPT,
developed by the research and deployment company OpenAI,
due to its easy accessibility and potential to democratize
knowledge [3]. The freely available version is based on the
artificial intelligence (AI)–based tool GPT-3.5, which
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encompasses billions of parameters and has been trained on
approximately 570 GB of text from the internet [1,2].

ChatGPT’s GPT-3.5 iteration has already shown promise in
several routine medical tasks and medical research [4-7], even
raising ethical concerns in the literature [2,3,8]. The prompt and
interactive nature of this AI’s responses might even
revolutionize search engines, while also revealing shortcomings
in medical education [9-11]. However, despite the introduction
of the more advanced iteration GPT-4, concerns about the lack
of transparency regarding this AI’s model parameters, training
process, and underlying data structure remain unaddressed
[8,12]. These concerns cast doubt on the medical proficiency
of these LLMs, as both were not primarily trained on medical
data and are the first to admit that as a language AI model,
passing a medical examination is outside their skillset
(Multimedia Appendix 1). Still, with assistance and adaptations,
GPT-3.5 nearly passed the United States Medical Licensing
Examination [13,14], and GPT-4 passed a Japanese medical
examination [15]. Considering the variable performance of
multilingual LLMs across different input languages [16,17], it
is imperative to evaluate these models in various other linguistic
contexts as well as on large data sets of original medical
examination questions.

The primary objective of this study is to evaluate the medical
proficiency of both ChatGPT iterations (GPT-3.5 and -4) in
comparison to medical students by testing it on 937 original
questions from the written German medical licensing
examination (Zweites Staatsexamen), providing further data for
a possible future integration. While the German medical
licensing examination covers various medical subdisciplines in
320 multiple-choice questions [18], it has a high
interexamination reliability of over 0.9 [19]. Despite using the
same third-party client for question retrieval as earlier studies,
the German approach of publicly releasing the examination
questions enables the third-party client to guarantee the
originality of the test items derived directly from the
examination itself [20]. Additionally, to the best of our
knowledge, we have tested both ChatGPT versions on the largest
data set of medical licensing examination questions not included
in their training data set. Furthermore, we did not exclude all

image-based questions a priori. Instead, we evaluated the
relevance of the images for each question and compared the
results both with and without images.

Methods

Data Collection
To ensure that any observed performance was not influenced
by changes in ChatGPT’s training data, we specifically chose
the 3 most recent examinations (October 2021, April 2022, and
October 2022) after the AI’s knowledge cutoff date [17]. Thus,
we were able to obtain 937 multiple-choice questions, each with
5 possible answers from the third-party client Amboss, a
web-based learning platform that provides the original questions
from the Institut für Medizinische und Pharmazeutische
Prüfungsfragen (IMPP). To maintain the original examination
format, we presented all obtained questions and answer options
in the same order as they appeared in the examination. No
specific training code was used while submitting the questions.
Due to AI’s inability to analyze visual content, answerability
based on question text alone was defined as the primary
inclusion criterion, resulting in the exclusion of 102 questions.
The questions were submitted through ChatGPT’s interface of
the GPT-3.5 (January 30, 2023) and GPT-4 (March 14, 2023)
versions. ChatGPT’s answers were then compared to the official
correct answers and evaluated. If ChatGPT selected none or
more than 1 of the multiple-choice answers, the question was
repeated in its original format up to 4 times or until a conclusive
response could be obtained from ChatGPT (Figure 1).

We recorded additional data, such as answer length, content
warnings, and recommendations for further diagnosis, and
categorized the questioning methodology. To assess the
readability of a question, we used the Simple Measure of
Gobbledygook (SMOG) as it has shown acceptable interrater
reliability for patient education materials in the literature [21].

Examination statistics provided by the “MEDI-LEARN” portal
were also used, including the number of correct student answers
and the specialization of each question. The “Blueprint”
published by the IMPP outlines the distribution of subspecialties
within the written state examinations [18].
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Figure 1. Flowchart of the study design for the evaluation of ChatGPT’s (GPT-3.5 and GPT-3) accuracy in the written German medical licensing
examination (2021-2022). The flowchart presents the criteria for question selection, including both the inclusion and exclusion criteria.

Statistical Analysis
To perform our data analysis, we used several packages [22-37]
in addition to the R programming language [38].

While continuous variables were reported as arithmetic mean
(SD) values, categorical variables were reported as frequencies
and percentages. The Kolmogorov-Smirnov test, Shapiro-Wilk
test, and QQ plots were used to confirm the normal distribution
of continuous data statistically and graphically. To determine
significant differences, we used unpaired t test or ANOVA for
continuous variables and chi-square test or Wilcoxon rank-sum
test for categorical variables. P values of <.05 were deemed
significant. Univariate and multivariate regression analyses
were additionally performed to provide information on
probabilities and predictors.

Ethical Considerations
Ethics approval was not required as data were collected from
publicly available sources on the internet or were generated
using AI-based methods. No personally identifiable information
was used in the data collection, and all data were handled in
accordance with applicable data privacy laws and regulations.

Results

Overall, GPT-4 demonstrated superior performance with an
average score of 796 out of 937 (85%), surpassing GPT-3.5’s
score of 548 out of 937 (58%), which previously fell below the
general passing threshold of 60% (Figure 2A) [37-39]. For the
April 2022 examination, GPT-3.5 and GPT-4 achieved their
highest scores (GPT-3.5: 195/319, 61%; GPT-4: 287/315, 91%),
while the proportion of students who answered correctly

remained constant across the 3 examinations (mean 76%, SD
18%; P=.86; Figure 2B and Multimedia Appendix 2).

Thus, GPT-4 passed all tested examinations, whereas GPT-3.5
could only pass 1 of the 3 examinations. Although the
examinations varied in several aspects, we also observed a
significant difference in the number of images (P=.02; Figure
2C and Multimedia Appendix 2). As GPT-3.5 and GPT-4 could,
at the time of the study, not process these, we further
investigated the potential image-related discrepancy between
the examinations by excluding from subsequent analyses any
questions that required image-dependent responses. The
exclusion of these questions did not significantly alter
examination difficulty, as evidenced by similar student scores
(Figure 2D).

Moreover, no differences were observed in the parameters
collected on student accuracy, questions, or answer
characteristics in relation to the performance of GPT-4 and
GPT-3.5 in the excluded cases (Multimedia Appendix 3). Upon
excluding image-based questions, GPT-4 continued to
outperform GPT-3.5, with scores approaching 91.44%.
However, GPT-3.5 exceeded expectations by achieving passing
scores on all 3 examinations (October 2021: 60.22%; April
2022: 63.36%; October 2022: 60.07%; Figure 2E and
Multimedia Appendix 4). GPT-3.5’s accuracy (P=.66), the
number of images (P=.07), and students’ accuracy (P=.77)
remained constant throughout the examinations, whereas
GPT-4’s accuracy (P=.02), the specialties (P<.001), and question
type (P=.04) varied (Multimedia Appendix 4 and Figures 2A,
2B, and 2E). The details of the included questions and their
respective categorizations are provided in Table 1.
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Figure 2. Bar plots of ChatGPT’s (GPT-3.5 and GPT-4) and box plots of students’ accuracy in the written German medical licensing examination
(2021-2022). Bar graphs and box plots of (A) the relative number of correct answers provided by ChatGPT (GPT-3.5 and GPT-4) answers, (B) correct
answers provided by students, (C) and image-based questions for the different examinations. (D and E) The relative number of correct answers by
ChatGPT (GPT-3.5 and GPT-4) and students, comparing all questions with the included text-based questions. The 60% pass mark is presented as a red
line in (A) and (E) to provide context for the performance of ChatGPT (GPT-3.5 and GPT-4). In addition, (E) displays the percentile achieved by
ChatGPT (GPT-3.5 and GPT-4) for each year's examination, based on the percentile limits published by the Institut für Medizinische und Pharmazeutische
Prüfungsfragen [37-39].
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Table 1. Summary statistics for ChatGPT's (GPT-3.5 and GPT-4) accuracy during the written German medical licensing examination, 2021-2022.

Accuracy of GPT-4Accuracy of GPT-3.5Overall
(N=834)

Characteristic

P valueTrue
(n=729)

False
(n=105)

P valueTrue
(n=511)

False
(n=323)

  

<.001a78 (17)70 (18)<.001a80 (16)71 (18)77 (18)Students' correct response rate (%), mean
(SD)

<.001c473 (65)38 (36)N/AN/AN/Ab511 (61)Accuracy of GPT-3.5, n (%)

N/AN/AN/A<.001c473 (93)256 (79)729 (87)Accuracy of GPT-4, n (%)

.21a14.97 (1.84)14.91 (2.26).65a14.98 (1.90)14.93 (1.87)14.96 (1.89)Readability score of the question, mean
(SD)

.009cN/AN/A.76cQuestion type , n (%)

 453 (62)79 (75) 328 (64)204 (63)532 (64)Connected (key feature)

 276 (38)26 (25) 183 (36)119 (37)302 (36)Single question

.03c67 (9.2)17 (16).02c61 (12)23 (7.1)84 (10)Images referenced in questions

.07cN/AN/A.02cSpecialty, n (%)

 36 (4.9)7 (6.7)31 (6.1)12 (3.7)43 (5.2)Gynecology

 68 (9.3)6 (5.7)50 (9.8)24 (7.4)74 (8.9)Infectiology

 161 (22)15 (14)105 (21)71 (22)176 (21)Internal medicine

 100 (14)12 (11)61 (12)51 (16)112 (13)Neurology

 223 (31)46 (44)163 (32)106 (33)269 (32)Others

 51 (7.0)11 (10)36 (7.0)26 (8.0)62 (7.4)Pediatrics

 49 (6.7)5 (4.8)43 (8.4)11 (3.4)54 (6.5)Psychiatry

 41 (5.6)3 (2.9) 22 (4.3)22 (6.8)44 (5.3)Surgery

.34cN/AN/A.64cExpertise, n (%)

 90 (12)13 (12)71 (14)32 (9.9)103 (12)Background knowledge

 45 (6.2)4 (3.8)30 (5.9)19 (5.9)49 (5.9)Complications

 412 (57)54 (51)282 (55)184 (57)466 (56)Diagnostic competence

 30 (4.1)6 (5.7)23 (4.5)13 (4.0)36 (4.3)Prevention competence

 26 (3.6)8 (7.6)20 (3.9)14 (4.3)34 (4.1)Scientific practice

 126 (17)20 (19)85 (17)61 (19)146 (18)Therapeutic competence

aWilcoxon rank-sum test.
bN/A: not applicable.
cPearson chi-square test.

After controlling for all other variables, correct student responses
(GPT-3.5: OR 0.01, 95% CI 0.00-0.01, P<.001; GPT-4: OR
0.00, 95% CI 0.00-0.00, P=.003) and questions with images
(GPT-3.5: OR 0.19, 95% CI 0.08-0.30, P<.001; GPT-4: OR
–0.09, 95% CI –0.16 to –0.01, P=.02) emerged as significant
predictors of GPT-3.5’s and GPT-4’s accuracy, regardless of
the version. Furthermore, our analysis revealed that only
questions pertaining to psychiatry were significant predictors
of correct GPT-3.5 responses (OR 0.19, 95% CI 0.02-0.36,

P=.03). In contrast, questions related to internal medicine (OR
0.10, 95% CI 0.00-0.19, P=.04) and surgery (OR 0.12, 95% CI
0.00-0.25, P=.049) were the only medical subspecialties
significantly predicting accurate responses of GPT-4.
Conversely, questions concerning scientific practice (OR –0.14,
95% CI –0.29 to 0.00, P=.05) were less likely to be answered
correctly by GPT-4 (Table 2 and Figure 3). The question SMOG
readability score, however, did not significantly impact
ChatGPT’s accuracy.
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Table 2. Regression analysis to compare ChatGPT's (GPT-3.5 and GPT-4) accuracy during the written German medical licensing examination
(2021-2022; N=833).

GPT-4GPT-3.5Characteristic

MultivariateUnivariateMultivariateUnivariate

P value95% CIβP value95% CIOdds ra-
tio

P value95% CIβP value95% CIOdds ra-
tio

 

.0030.00 to
0.00

.00<.0011.01 to
1.03

1.02<.0010.00 to
0.01

.01<.0011.02 to
1.04

1.03Students’ correct re-
sponse rate

N/AN/AN/AN/AN/AN/Aa <.0010.16 to
0.36

.26<.0012.13 to
5.02

3.25Accuracy of GPT-4

<.0010.08 to
0.17

.12<.0012.13 to
5.02

3.25N/AN/AN/AN/AN/AN/AAccuracy of GPT-3.5

.55–0.04 to
0.07

.02.640.59 to
1.40

0.90.94–0.08 to
0.08

.00.680.70 to
1.27

0.94October 2021 examina-
tion

.030.01 to
0.11

.06.011.17 to
3.03

1.85.47–0.05 to
0.11

.03.350.86 to
1.54

1.15April 2022 examination

N/AN/AN/A.030.42 to
0.96

0.63N/AN/AN/A.590.69 to
1.24

0.92October 2022 examina-
tion

.0070.02 to
0.11

.06.011.18 to
3.01

1.86.39–0.10 to
0.04

–.03.780.72 to
1.28

0.96Question type

.02–0.16 to
–0.01

–.09.030.30 to
0.96

0.52<.0010.08 to
0.30

.19.031.09 to
2.98

1.77Images referenced in
questions

.73–0.07 to
0.11

.02.0070.37 to
0.86

0.57.94–0.13 to
0.14

.00.800.71 to
1.30

0.96Other specialty

.88–0.12 to
0.14

.01.420.32 to
1.78

0.71.19–0.06 to
0.31

.12.170.84 to
3.33

1.62Gynecology and obstet-
rics

.0490.00 to
0.25

.12.240.72 to
8.49

2.03.18–0.30 to
0.06

–.12.120.33 to
1.14

0.62Surgery

.0430.00 to
0.19

.10.070.99 to
3.14

1.7.81–0.15 to
0.12

–.02.630.66 to
1.30

0.92Internal medicine

.11–0.02 to
0.20

.09.230.78 to
4.48

1.7.48–0.10 to
0.22

.06.240.82 to
2.28

1.35Infectious diseases

.61–0.09 to
0.15

.03.450.62 to
4.23

1.44.030.02 to
0.36

.19.0051.37 to
5.40

2.61Psychiatry

.11–0.02 to
0.18

.08.520.68 to
2.45

1.23.61–0.18 to
0.11

–.04.120.49 to
1.08

0.72Neurology

N/AN/AN/A.210.34 to
1.34

0.64N/AN/AN/A.600.52 to
1.48

0.87Pediatrics

.34–0.14 to
0.05

–.05.330.81 to
1.85

1.22.67–0.17 to
0.11

–.03.600.70 to
1.23

0.93Diagnostic competence

.28–0.16 to
0.05

–.06.660.54 to
1.54

0.89.65–0.19 to
0.12

–.04.410.60 to
1.24

0.86Therapeutic competence

.36–0.16 to
0.06

–.05>.990.55 to
1.94

1.00.36–0.09 to
0.24

.08.090.95 to
2.32

1.47Background knowledge

.11–0.25 to
0.03

–.11.450.31 to
1.93

0.71>.99–0.20 to
0.20

.00.740.57 to
2.32

1.13Prevention competence

.05–0.29 to
0.00

–.14.060.21 to
1.09

0.45.95–0.20 to
0.22

.01.770.45 to
1.85

0.90Scientific practice

N/AN/AN/A.340.66 to
5.61

1.66N/AN/AN/A >.990.56 to
1.84

1.00Complications

.98–.01 to
0.01

.00.760.91 to
1.14

1.02.24–0.01 to
0.03

.01.700.94 to
1.09

1.01Readability score of the
question

aN/A: not applicable.
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Figure 3. Comparison of ChatGPT's (GPT-3.5 and GPT-4) and students’ relative accuracy in relation to the tested specialties and methodology in the
written German medical licensing examination (2021-2022). The bar graph displays the percentage of correct answers provided by ChatGPT (GPT-3.5
and GPT-4) and students in (A) each specialty and (B) and methodology, while the blue line demonstrates a 60% pass mark.

Discussion

Principal Findings
With the introduction of ChatGPT’s GPT-3.5 and GPT-4
iterations, the potential application for AI in research, patient
care, and medical education is gaining recognition [2,8,40]. By
improving the users’ experience and facilitating more efficient
information retrieval, ChatGPT might even revolutionize the

future of search engines and shift the focus of medical education
from memorization to practical application [8,10,11].

Under this premise, the nearly passing scores of the freely
available GPT-3.5 iteration, along with the exceptional scores
of GPT-4, are highly relevant. Even with the varying scores of
51%-67% of GPT-3.5 across various input languages
[13-15,41,42], both models consistently outperform most
prominent general and domain-specific LLMs, such as
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InstructGPT (53%), GPT-3 (25%), and BioMedLM (50%)
[14,43,44]. Despite these improvements, GPT-3.5’s or GPT-4’s
performance still fell short in comparison to that of medical
students in a Japanese medical examination according to the
study by Takagi et al [15]. In comparison to the German medical
students, however, GPT-3.5 scored in the 8.6th percentile, while
GPT-4 ranked in the 92.8th, 99.5th, and 92.6th percentiles in
the October 2021, April 2022, and October 2022 examinations
[39,45,46]. The observed variations in the AI's accuracy across
input languages may partially reflect the language composition
of their data sets, as LLMs tend to favor languages that are more
represented in their training data [16,17]. Since ChatGPT
appears to perform optimally with English inputs, language
emerges as a limiting factor for its accuracy, suggesting that
globally consistent application is dependent upon users'
proficiency in English.

Moreover, the nearly 30% performance increase from GPT-3.5
to GPT-4, as indicated in this study and supported by a Japanese
study, which suggests a similar language distribution within the
GPT-3.5 and GPT-4 data sets [15]. GPT-4, unlike GPT-3.5,
also did not answer questions containing images on repetition,
showing an improvement in the previously incorrect content
produced by GPT-4’s predecessor [17].

Thus, health care professionals could potentially benefit,
especially from GPT-4’s conclusive and often nonobvious
insights to multiple-choice questions, as these users have the
ability to verify crucial details [13,14,41]. For instance, there
is potential for using GPT-3.5 and GPT-4 in a medical education
tutoring environment, as evidenced by its successful application
in anatomy [47]. However, when using either GPT-3.5 or GPT-4
for medical applications, its differing accuracy across specialties
must also be taken into account [48]. GPT-3.5 initially displayed
a high degree of accuracy within the field of psychiatry, while
GPT-4 demonstrated its strength in internal medicine and
surgery. Considering the rising prevalence of psychiatric
disorders and concomitant challenges in providing care, it
seemed likely that nonprofessionals would also turn to the
chatbot for mental health issues at the time of GPT-3.5’s release
[8,49,50]. Hence, it is conceivable that GPT-3.5’s training data
set includes not only a substantial and reliable portion of
psychiatric data, but also its developers might have first
fine-tuned ChatGPT specifically in this domain in anticipation
of its high demand [51-53]. Thus, the developers might have
also fine-tuned GPT-4 specifically in internal medicine and
surgery, possibly reacting to a high demand in this area from
users of its’ predecessor. GPT-4’s impressive performance is
not limited to the medical field, as it demonstrated comparable
percentile scores in the Uniform Bar Exam, showcasing it
potential as a versatile tool across diverse academic disciplines
[17]. However, assessing the possible reasons for the
performance differences between GPT-3.5 and GPT-4 is
complicated by the confidential architecture of GPT-4 [54],
posing challenges for research on future applications.

In turn, GPT-4’s excellent achievements shed light on the
limitations of current testing paradigms in medical education
that often favor rote memorization over a critical and
context-aware approach. They also highlight the inadequacy of
multiple-choice questions as a means of assessing medical

knowledge, as they tend to encourage binary thinking as “true”
and “false,” which often fails to capture the complex reality of
the medical practice [11]. Although GPT-3.5 and GPT-4 allow
the simple and fast retrieval of medical information from any
internet-capable device that fits in one's pocket [9,10], neither
GPT-3.5 nor GPT-4 verifies the information they provide. Thus,
ChatGPT's output needs to be approached with a critical
mindset, recognizing that misinformation may be more difficult
to detect than in the output of other search engines that offer
multiple sources in response to a query and take login credentials
into account [8,55]. To navigate these changing informational
landscapes, a basic understanding in data science seems
necessary alongside traditional medical expertise [56]. It may
even be beneficial for future iterations of AI tools to include
references to the sources underlying each search in order to
increase transparency and allow users to assess the reliability
of the information they receive.

In a previous study by Nov et al [57], considering that 59% of
participants trusted chatbots more than traditional search
engines, it must be noted that GPT-3.5 and GPT-4 have only
been tested on medical examination questions and not questions
by nonprofessionals, limiting general recommendations for
unsupervised patient education or the general population. It
seems evident that GPT-4 has been benchmarked against
medical licensing examinations, explaining not only GPT-4’s
excellent scores but also exceeding achievements in internal
medicine and surgery, which, for instance, have been
overrepresented in the medical examinations assessed in this
study [12,17].

Since GPT-3.5 failed the German medical licensing examination
by a narrow margin, its use for answering medical questions is
generally not advisable. Moreover, the remarkable performance
of GPT-4 in the German Medical State Examination may not
be universally applicable outside a medical examination setting,
especially considering that GPT-4 was presumably benchmarked
on academic and professional examinations [17].

As literature on ChatGPT is scarce, and it can be difficult to
detect incorrect output from this AI tool, the content it generates
must be carefully assessed. Nevertheless, medical professionals
may still be able to benefit from GPT-3.5’s and GPT-4’s
explanations and, in some cases, gain new nonobvious insights.
With the release of GPT-4’s ability to handle pictures on the
horizon, the potential for further applications of GPT-3.5 and
GPT-4 to improve the medical workflow or medical education
seems eminent, emphasizing the need for continued research
into AI.

Limitations
This study’s findings on GPT-3.5’s and GPT-4’s medical
proficiencies are limited to multiple-choice questions from the
German medical licensing examination, which may not be
representative of other types of examinations or contexts.
However, it is worth noting that GPT-3.5 and GPT-4 have
demonstrated similar performances in examinations in other
countries and languages, which suggests some degree of
generalizability.
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In addition, the sample size of 937 questions and the exclusion
of image-based questions may not capture the full range of
difficulty levels or content areas. Although the collected
parameters did not differ in terms of GPT-3.5’s and GPT-4’s
accuracy in the excluded cases, the decision to exclude
image-based questions may have introduced a sampling bias.
By testing for differences, efforts were made to minimize this
bias and maintain the integrity of the results.

As GPT-3.5’s and GPT-4’s performances were compared to
those of German medical students using the MEDI-LEARN
service, a selection bias might have been introduced. However,
the high correlation between the MEDI-LEARN statistics and
the IMPP statistics indicates at best a weak expression of this
selection bias [58].

It should also be noted that a replication of this study might not
yield the exact same results, as the literature suggests that
GPT-3.5 is inconsistent in answering 15% of medical questions
[59]. However, the trends observed in this study appear to be
consistent with those reported in other published and preprint
studies on GPT-3.5’s and GPT-4’s performance.

Conclusions
In conclusion, the results of this study indicate that only GPT-4
consistently passed all 3 medical examinations, ranking in the
92.8th to 99.5th percentile in comparison to medical students.
These findings highlight the strengths and limitations of
ChatGPT in the context of medical examinations and raise
questions about the future of medical education.

Although GPT-3.5’s and GPT-4’s accuracy in medical
examinations seems consistent across different countries and
languages, its inconsistencies, potential biases, and number of
incorrect answers restrain a recommendation for its use by the
general population for medical purposes. However, its elaborate
explanations and potential to yield nonobvious insights may
benefit medical professionals in training.

While this study hints to a moderate accuracy of GPT-3.5 and
a stellar performance of GPT-4 in answering medical
examination questions, further research is necessary to gain
deeper insights, explore future applications, and ensure safe use
of ChatGPT for end users.
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