
Editorial

Can AI Mitigate Bias in Writing Letters of Recommendation?

Tiffany I Leung1,2, MPH, MD; Ankita Sagar3,4, MPH, MD; Swati Shroff5, MSc, MD; Tracey L Henry6, MPH, MSc,
MD
1Department of Internal Medicine (adjunct), Southern Illinois University School of Medicine, Toronto, ON, Canada
2JMIR Publications, Toronto, ON, Canada
3CommonSpirit Health, Chicago, IL, United States
4Creighton University School of Medicine, Omaha, NE, United States
5Division of Internal Medicine, Thomas Jefferson University, Philadelphia, PA, United States
6Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States

Corresponding Author:
Tiffany I Leung, MPH, MD
JMIR Publications
130 Queens Quay East
Unit 1100
Toronto, ON, M5A 0P6
Canada
Phone: 1 416 583 2040
Email: tiffany.leung@jmir.org

Abstract

Letters of recommendation play a significant role in higher education and career progression, particularly for women and
underrepresented groups in medicine and science. Already, there is evidence to suggest that written letters of recommendation
contain language that expresses implicit biases, or unconscious biases, and that these biases occur for all recommenders regardless
of the recommender’s sex. Given that all individuals have implicit biases that may influence language use, there may be opportunities
to apply contemporary technologies, such as large language models or other forms of generative artificial intelligence (AI), to
augment and potentially reduce implicit biases in the written language of letters of recommendation. In this editorial, we provide
a brief overview of existing literature on the manifestations of implicit bias in letters of recommendation, with a focus on academia
and medical education. We then highlight potential opportunities and drawbacks of applying this emerging technology in
augmenting the focused, professional task of writing letters of recommendation. We also offer best practices for integrating their
use into the routine writing of letters of recommendation and conclude with our outlook for the future of generative AI applications
in supporting this task.
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Introduction

Letters of recommendation play a significant role in higher
education and career progression, particularly for women and
underrepresented groups in medicine and science. Letters of
recommendation include any letter written to support or sponsor
an individual for a job [1,2], internship [3], or training position
[4]; a scholarship or grant; an award or recognition; a promotion;
or other important professional milestones. For example, letters
of support for a job application may be used in so-called round
1 selection stages, even before a candidate interviews for a
position. This means that such letters and evaluations, as well

as the language used to describe a candidate, can significantly,
even if unintentionally, influence a hiring committee's
consideration of an individual’s candidacy. Already, there is
evidence to suggest that written letters of recommendation
contain language that expresses implicit biases, or unconscious
biases [5,6], and that these biases occur for all recommenders
regardless of the recommender’s sex [7]. Given that all
individuals have implicit biases that may influence language
use, there may be opportunities to apply contemporary
technologies, such as large language models (LLMs) or other
forms of generative artificial intelligence (AI), to augment and
potentially reduce implicit biases in the written language of
letters of recommendation. Although AI has been used to
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analyze recommendation letter content for bias via, for example,
natural language processing and sentiment analysis [8] or
automated text mining [9,10], there remains an unexplored
potential opportunity to apply AI to generate letters, especially
with the aim of reducing bias.

As of May 2023, some of the authors had one-on-one
conversations with medical faculty peers or leaders and even
heard conference plenary speakers explicitly endorse subscribing
to generative AI services, such as ChatGPT Plus [11], to help
them specifically with writing letters of recommendation. It is
very likely that there are many professionals who apply such
services, yet little to no exploration of the potential opportunities
and pitfalls has been reported on this application of generative
AI. In this editorial, we provide a brief overview of existing
literature on the manifestations of implicit bias in letters of
recommendation, with a focus on academia and medical
education. We then highlight potential opportunities and
drawbacks of applying this emerging technology in augmenting
the focused, professional task of writing letters of
recommendation. We also offer best practices for integrating
their use into the routine writing of letters of recommendation
and conclude with our outlook for the future of generative AI
applications in supporting this task. For the purposes of this
editorial, we focus on letters of recommendation, although the
presence of bias in performance evaluations and assessments
[12-15], especially in medical training, is also a well-recognized
phenomenon. It may be possible to apply some of the key points
raised in this editorial similarly to writing performance
evaluations.

Implicit Bias in Letters of
Recommendation

Implicit bias is a type of bias that arises from unconscious
associations and stereotypes about members of a social group.
Often, bias is based on gender, race, ethnicity, ability, language
proficiency, or any aspect of one’s identity. Gendered language
usage occurs in medicine, health care, and professions and areas
beyond our usual areas as physicians; the World Bank noted in
a 2019 report that “[a]ttitudes toward women are also influenced
by gendered languages…gendered languages could translate
into outcomes like lower female labor force participation” [16].

Gendered terms are words that are associated with a specific
gender. Various studies have noted that gendered language
appears in letters of recommendation for academic faculty,
science, and medicine [5]. Specifically, categories of terms
include communal terms (eg, “caring,” “nurturing,” “attentive,”
or “kind”), which occur more frequently in recommendation
letters for women, and agentic terms (eg, “confident,”
“assertive,” “outspoken,” or “ambitious”), which occur more
frequently in recommendation letters for men [5]. In a study by
Trix and Psenka [6], the adjective “successful” occurred in 7%
and 3% of letters for men and women, respectively, while the
nouns “accomplishment” and “achievement” occurred in 13%
and 3% of letters for men and women, respectively. For women
applicants, “compassionate” and “relates well to patients and
staff at all levels” stood out (16% vs 4% in letters for women
and men, respectively) [6].

Less recognized categories of descriptors include hedging
language, doubt-raisers, and grindstone language [6]. Such
language is more often applied to women in recommendation
letters than to men. Doubt-raising language includes negative,
potentially negative, hedging, unexplained, or irrelevant
comments and faint praise [6,7]. Examples of doubt-raising
language include “while she has not done”; “while not the best
student I have had”; and “bright, enthusiastic, he responds well
to a minimum amount of supervision.” Examples of hedging
include “it appears that” or “now that she has chosen,” and an
example of faint praise is “she worked hard on projects that she
enjoys.” Grindstone language implies that an individual is
hardworking because of a need to compensate for a shortcoming
in their ability (eg, “hardworking,” “conscientious,” or
“dedicated”) [17]. For example, “She is a superb experimentalist
– very well organized, thorough and careful in her approach to
research” [6].

Tools to Identify Implicit Bias in Language

Out-of-the-box tools to help with identifying commonly used
categories of words are readily available for research purposes.
One commonly used tool in text analysis is Linguistic Inquiry
and Word Count (LIWC) [18,19]. LIWC offers text analysis
tools based upon established LIWC dictionary categories [20]
that can be augmented with user-defined dictionaries; Madera
et al [5] validated added dictionaries of communal and agentic
terms in their study of gendered language in recommendation
letters [21]. Additional researchers have also created, although
not yet validated, 5 additional user-defined dictionaries,
including grindstone traits, ability traits, standout adjectives,
research terms, and teaching terms [1,6,21-23]. LIWC usage
typically requires a paid license for users, and LIWC offers its
dictionaries in more than 15 languages.

Additional text analysis and processing techniques also can be
applied in various ways to recommendation letters to identify
biased language. Such approaches can involve using
pre-established dictionaries of terms (eg, from LIWC),
performing text mining [9] or topic modeling [24], or applying
natural language processing packages [8].

Real-time integrated tools to identify biased language are
available in productivity platforms. For example, the
#BiasCorrect plug-in in Slack works “like spell check but for
gender bias, this plug-in will flag your unconscious bias to you
in real-time and offer up bias-free alternatives for you to
consider instead” [25]. Integrated tools, extensions, or plug-ins
are appealing; however, no such real-time tool exists yet in a
text processing program. There are also several websites where
users can copy and paste individual words or short chunks of
text into a web-based form to identify which words are used
more often for women or men and, perhaps, even in certain
disciplines [26,27]. However, these are stand-alone tools that
may serve as more of a curiosity rather than a routinely usable
support in the recommendation letter writing workflow.
Additionally, all of these existing tools share the same feature
of first depending on the human generation of language and
then reactively providing feedback if the writer is aware of the
tool and uses it with a specific intention.
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LLMs for Letters of Recommendation

Overview of LLMs
The concept of AI augmentation of human tasks is not new;
augmentation “is where employers create workplaces that
combine smart machines with humans in close
partnerships—symbiotically taking advantage of both human
intelligence and machine intelligence. In other words, the AI
system is used to complement the capabilities of a human worker
(or vice versa)” [28]. Similarly, AI augmentation of writing
letters of recommendation can offer a pathway to improve letter
writing while keeping the human in the loop. Briefly, LLMs
are based on a transformer model, a neural network architecture
that initially involves a pretraining stage of self-supervised
learning from a large amount of unannotated data. Subsequently,
in a fine-tuning stage, further training on a smaller, task-specific
data set can be done to facilitate specific tasks [29]. Since the
initial general popularity of LLMs during late 2022, with
OpenAI’s ChatGPT [30], countless additional LLMs have been
developed and launched. Notably, there are also free,
open-source models available for research or commercial use,
like Meta’s Llama 2 [31].

Training an LLM
Any algorithm or AI is only as good as the training data with
which the model is trained. LLMs have already been shown to,
for example, generate statements that have certain political
leanings [32,33] or have cultural biases [34,35]. If the training
data are biased, because of the probabilistic nature of the
language generated in an LLM, that bias can be perpetuated or
amplified in prompted outputs. Nevertheless, the potential of
LLMs to support the task of recommendation letter writing is
still a major opportunity that cannot be ignored.

Using open-source LLMs to train one's own generative AI on
a set of one’s own recommendation letters is a possibility, but
this perhaps is limited by the size of the training set and the
potential of unintentionally amplifying one's own implicit biases.
During a workshop at the American Medical Informatics
Association’s Annual Symposium in 2020, on the topic of bias
in recommendation letters, one advanced career academic
faculty member with 3 decades of experience in their field
reflected on their writing of over 200 recommendation letters
[36]. At that time, a named entity recognition approach to
identifying key words offered a preliminary glimpse at one
individual’s writing patterns.

Increasing Efficiency
Improving the efficiency of recommendation letter writing can
be especially valuable in easing the burden of this task for the
small proportion of underrepresented groups who are in top
leadership positions in medicine and scientific fields. For
example, in medicine, although the proportion of women
department chairs has increased over the last decade, still only
18% are women; the proportion of women medical school deans
has barely shifted since 2012, increasing from 16% to 18% in
2018 [37]. In academia, when promotion from associate
professor to full professor requires letters of recommendation
from individuals with a rank identical to that being sought, this

burden can be especially amplified for women faculty among
the highest academic ranks. Fortunately, the gender gap at the
full-time professor level has narrowed over the past decade, yet
still only 25% of full professors are women as of 2018 [38,39].

Although no biased language checker plug-ins are available in
word processing software, some LLMs have the capability to
potentially ingest one or more files in various formats.
Conceivably, a curriculum vitae in PDF format could be
provided as part of a prompt. Afterward, with thoughtful
prompts, the LLM could generate relevant portions of a
recommendation letter for a writer to use. Putting the energy of
generation on the AI, with the human in a position of writing,
could be a time-saver. Alternatively, a human writing a rough
draft can also prompt AI to refine and polish the language of
the recommendation letter. There are more ways that AI can
augment the recommendation letter writing process, and in all
cases, these would help with the efficiency of generating the
letters for busy faculty or those who may need extra support to
write professionally and clearly in the language required for the
letter. Moreover, as efficiency improves, a diverse range of
letter writers can be created across the gender spectrum, thus
alleviating burdens and fostering a culture of thoughtful
language that emphasizes the merits and potential of candidates
for promotion or leadership.

Cautionary Notes
Some additional notes of caution are warranted for anyone
considering using generative AI to help them with writing
recommendation letters. In scientific publishing, there is almost
no remaining controversy as to whether generative AI can
coauthor a manuscript (it should not [40-42]). The arguments
for no generative AI coauthorship center on accountability. The
sense of accountability for the factual content of a written
document is self-evident. Publishers either ban generative AI
use by authors in generating portions of a manuscript or permit
it to a limited extent and with required disclosure and
transparency. No analogous guidelines exist for writing
recommendation letters, especially since it is a common practice
that recommendation letter writers can recycle their letters as
templates for another similar letter, or some letter writers ask
the candidate to draft a first version of the letter. Although we
do not expect letter writers to disclose generative AI use,
accountability for the outputs used in an official final
recommendation letter lies solely with the signer of the letter.

Additionally, the focus here has been on recommendation letter
writing. The other half of this process is recommendation letter
reading and interpretation. Regardless of self-generated text or
AI-assisted generation of text, there is a history of bias in
AI-supported hiring [43]. Even human screeners are not immune
to this bias, tending to carry biases when they, for example,
perceive a name to be identifying a person's gender or race
[44,45]. This half of the issue on recommendation letter
interpretation and, more generally, on AI-supported hiring
processes has been the focus of recent regulation in New York
City [46].

Finally, we cannot emphasize enough that the aim is to reduce
bias in language, not to reduce how often women candidates
are written about as being “caring” or “nurturing.” In medicine,
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all physician candidates would ideally embody these traits,
among others, in comparable ways that are needed for them to
be successful in the target roles they are being recommended
for.

Conclusion

Overall, we are optimistic about the potential of generative AI
in augmenting recommendation letter writing. Naturally, the
opportunities we raise in this editorial are not without their
potential limitations. One major counterargument is that the
application of any technology to this specific task does not (or
cannot) address the underlying problems that racism,
stereotyping, and various forms of bias and discrimination are
deeply rooted in systemic and organization structure. As a result,
the potential for gender bias in AI remains possible [47]. We
agree with this position and see the application of technology,
in the ways described in this editorial, as a supplementary tool
or option for existing programs and initiatives around implicit
bias recognition and management [48], rather than as a
replacement or substitution. Additionally, although this editorial
does not address other professional documents that may benefit
from technological augmentation, there is evidence to suggest

that biased language appears in evaluations of trainees [49],
including subjective evaluations for students applying to
residency programs [24]; qualitative evaluations of residents
and students [12,50]; student, resident, and fellow evaluations
of faculty physicians [9]; and more [51,52]. Racial bias in
evaluations also is problematic [53-55].

In a future investigation, we aim to further determine what
practices current faculty and physicians are using in the AI
augmentation of their writing of letters of recommendation.
There may also be opportunities to computationally determine
prompts that best facilitate recommendation letter writing with
minimal implicit bias [56] or to fine-tune an LLM based on a
large corpus of recommendation letters. We look forward to the
advancements that medical and scientific education and career
advancement processes can benefit from, including new
technological tools, like generative AI, to overcome systemic
biases for women and underrepresented groups in their
respective disciplines. AI augmentation can be a tool when
utilized mindfully and with caution, improving one letter of
recommendation at a time. This has the potential to address and
mitigate systemic biases, especially when equity in medical and
scientific careers is at stake [57,58].

Acknowledgments
This article is inspired by previous related work published by the authors in the official newsletter of the Society of General
Internal Medicine, SGIM Forum [59], and a workshop presentation by the authors at the 2022 Annual Meeting of the Society of
General Internal Medicine [60].

Authors' Contributions
TIL was responsible for conceptualization, writing and preparing the original draft, and reviewing and editing this paper. AS,
SS, and TLH were responsible for conceptualization and reviewing and editing this paper.

Conflicts of Interest
TIL is the scientific editorial director for JMIR Publications.

References

1. Schmader T, Whitehead J, Wysocki VH. A linguistic comparison of letters of recommendation for male and female chemistry
and biochemistry job applicants. Sex Roles 2007;57(7-8):509-514 [FREE Full text] [doi: 10.1007/s11199-007-9291-4]
[Medline: 18953419]

2. Bernstein RH, Macy MW, Williams WM, Cameron CJ, Williams-Ceci SC, Ceci SJ. Assessing gender bias in particle
physics and social science recommendations for academic jobs. Soc Sci 2022 Feb 14;11(2):74 [doi: 10.3390/socsci11020074]

3. Houser C, Lemmons K. Implicit bias in letters of recommendation for an undergraduate research internship. J Furth High
Educ 2017 Apr 24;42(5):585-595 [doi: 10.1080/0309877x.2017.1301410]

4. Grimm LJ, Redmond RA, Campbell JC, Rosette AS. Gender and racial bias in radiology residency letters of recommendation.
J Am Coll Radiol 2020 Jan;17(1 Pt A):64-71 [doi: 10.1016/j.jacr.2019.08.008] [Medline: 31494103]

5. Madera JM, Hebl MR, Martin RC. Gender and letters of recommendation for academia: agentic and communal differences.
J Appl Psychol 2009 Nov;94(6):1591-1599 [doi: 10.1037/a0016539] [Medline: 19916666]

6. Trix F, Psenka C. Exploring the color of glass: Letters of recommendation for female and male medical faculty. Discourse
& Society 2003 Mar;14(2):191-220 [doi: 10.1177/0957926503014002277]

7. Madera JM, Hebl MR, Dial H, Martin R, Valian V. Raising doubt in letters of recommendation for academia: Gender
differences and their impact. J Bus Psychol 2018 Apr 26;34:287-303 [doi: 10.1007/s10869-018-9541-1]

8. Sarraf D, Vasiliu V, Imberman B, Lindeman B. Use of artificial intelligence for gender bias analysis in letters of
recommendation for general surgery residency candidates. Am J Surg 2021 Dec;222(6):1051-1059 [doi:
10.1016/j.amjsurg.2021.09.034] [Medline: 34674847]

9. Heath JK, Weissman GE, Clancy CB, Shou H, Farrar JT, Dine CJ. Assessment of gender-based linguistic differences in
physician trainee evaluations of medical faculty using automated text mining. JAMA Netw Open 2019 May 03;2(5):e193520
[FREE Full text] [doi: 10.1001/jamanetworkopen.2019.3520] [Medline: 31074813]

JMIR Med Educ 2023 | vol. 9 | e51494 | p. 4https://mededu.jmir.org/2023/1/e51494
(page number not for citation purposes)

Leung et alJMIR MEDICAL EDUCATION

XSL•FO
RenderX

http://europepmc.org/abstract/MED/18953419
http://dx.doi.org/10.1007/s11199-007-9291-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18953419&dopt=Abstract
http://dx.doi.org/10.3390/socsci11020074
http://dx.doi.org/10.1080/0309877x.2017.1301410
http://dx.doi.org/10.1016/j.jacr.2019.08.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31494103&dopt=Abstract
http://dx.doi.org/10.1037/a0016539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19916666&dopt=Abstract
http://dx.doi.org/10.1177/0957926503014002277
http://dx.doi.org/10.1007/s10869-018-9541-1
http://dx.doi.org/10.1016/j.amjsurg.2021.09.034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34674847&dopt=Abstract
https://europepmc.org/abstract/MED/31074813
http://dx.doi.org/10.1001/jamanetworkopen.2019.3520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31074813&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


10. Alexander CS. Text mining for bias: A recommendation letter experiment. American Business Law Journal 2022 Apr
06;59(1):5-59 [doi: 10.1111/ablj.12198]

11. Introducing ChatGPT Plus. OpenAI. URL: https://openai.com/blog/chatgpt-plus [accessed 2023-06-11]
12. Klein R, Julian KA, Snyder ED, Koch J, Ufere NN, Volerman A, Gender Equity in Medicine (GEM) workgroup. Gender

bias in resident assessment in graduate medical education: Review of the literature. J Gen Intern Med 2019 May;34(5):712-719
[FREE Full text] [doi: 10.1007/s11606-019-04884-0] [Medline: 30993611]

13. Arora VM, Carter K, Babcock C. Bias in assessment needs urgent attention-no rest for the "Wicked". JAMA Netw Open
2022 Nov 01;5(11):e2243143 [FREE Full text] [doi: 10.1001/jamanetworkopen.2022.43143] [Medline: 36409501]

14. Mamtani M, Shofer F, Scott K, Kaminstein D, Eriksen W, Takacs M, et al. Gender differences in emergency medicine
attending physician comments to residents: A qualitative analysis. JAMA Netw Open 2022 Nov 01;5(11):e2243134 [FREE
Full text] [doi: 10.1001/jamanetworkopen.2022.43134] [Medline: 36409494]

15. Dayal A, O'Connor DM, Qadri U, Arora VM. Comparison of male vs female resident milestone evaluations by faculty
during emergency medicine residency training. JAMA Intern Med 2017 May 01;177(5):651-657 [FREE Full text] [doi:
10.1001/jamainternmed.2016.9616] [Medline: 28264090]

16. Gendered languages may play a role in limiting women’s opportunities, new research finds. The World Bank. 2019 Jan
24. URL: https://www.worldbank.org/en/news/feature/2019/01/24/
gendered-languages-may-play-a-role-in-limiting-womens-opportunities-new-research-finds [accessed 2023-06-11]

17. Valian V. Why So Slow?: The Advancement of Women. Cambridge, MA: The MIT Press; 1999.
18. Pennebaker JW, Booth RJ, Boyd RL, Francis ME. Linguistic Inquiry and Word Count: LIWC2015. LIWC. 2015. URL:

http://downloads.liwc.net.s3.amazonaws.com/LIWC2015_OperatorManual.pdf [accessed 2023-08-15]
19. Hovy D. Text Analysis in Python for Social Scientists: Discovery and Exploration. Cambridge, United Kingdom: Cambridge

University Press; Jan 2021.
20. Welcome to LIWC-22. LIWC. URL: https://www.liwc.app [accessed 2023-07-03]
21. Miller DT, McCarthy DM, Fant AL, Li-Sauerwine S, Ali A, Kontrick AV. The standardized letter of evaluation narrative:

Differences in language use by gender. West J Emerg Med 2019 Oct 17;20(6):948-956 [FREE Full text] [doi:
10.5811/westjem.2019.9.44307] [Medline: 31738723]

22. Dutt K, Pfaff DL, Bernstein AF, Dillard JS, Block CJ. Gender differences in recommendation letters for postdoctoral
fellowships in geoscience. Nat Geosci 2016 Oct 3;9:805-808 [doi: 10.1038/ngeo2819]

23. Friedman R, Fang CH, Hasbun J, Han H, Mady LJ, Eloy JA, et al. Use of standardized letters of recommendation for
otolaryngology head and neck surgery residency and the impact of gender. Laryngoscope 2017 Dec;127(12):2738-2745
[doi: 10.1002/lary.26619] [Medline: 28786169]

24. Turrentine FE, Dreisbach CN, St Ivany AR, Hanks JB, Schroen AT. Influence of gender on surgical residency applicants'
recommendation letters. J Am Coll Surg 2019 Apr;228(4):356-365.e3 [doi: 10.1016/j.jamcollsurg.2018.12.020] [Medline:
30630084]

25. #BiasCorrect install. Catalyst. URL: https://www.catalyst.org/biascorrect-install/ [accessed 2023-08-02]
26. Schmidt B. Gendered language in teaching evaluations. Ben Schmidt blog. URL: https://benschmidt.org/profGender/

[accessed 2023-08-02]
27. Forth T. Gender bias calculator. Tom Forth blog. URL: https://www.tomforth.co.uk/genderbias/ [accessed 2023-08-02]
28. Miller SM, Davenport T. AI and the future of work: What we know today. Tom Davenport. 2022. URL: https://www.

tomdavenport.com/ai-and-the-future-of-work-what-we-know-today/ [accessed 2023-06-11]
29. Shen Y, Heacock L, Elias J, Hentel KD, Reig B, Shih G, et al. ChatGPT and other large language models are double-edged

swords. Radiology 2023 Apr;307(2):e230163 [doi: 10.1148/radiol.230163] [Medline: 36700838]
30. Introducing ChatGPT. OpenAI. URL: https://openai.com/blog/chatgpt [accessed 2023-08-02]
31. Meta and Microsoft introduce the next generation of Llama. Meta AI. 2023 Jul 18. URL: https://ai.meta.com/blog/llama-2/

[accessed 2023-08-02]
32. Rozado D. The political biases of ChatGPT. Soc Sci 2023 Mar 02;12(3):148 [doi: 10.3390/socsci12030148]
33. Hartmann J, Schwenzow J, Witte M. The political ideology of conversational AI: Converging evidence on ChatGPT's

pro-environmental, left-libertarian orientation. arXiv. Preprint posted online on January 5, 2023. [FREE Full text]
34. Cao Y, Zhou L, Lee S, Cabello L, Chen M, Hershcovich D. Assessing cross-cultural alignment between ChatGPT and

human societies: An empirical study. arXiv. Preprint posted online on March 31, 2023. [FREE Full text]
35. Ferrara E. Should ChatGPT be biased? Challenges and risks of bias in large language models. arXiv. Preprint posted online

on April 18, 2023. [FREE Full text]
36. Leung TI, Ancker JS, Cimino JJ, Ross H, Wu H. S104: panel - an unseen art: Writing letters of support and nomination to

promote diversity, equity, and inclusion in informatics. 2020 Presented at: 2020 American Medical Informatics Association
(AMIA) Annual Symposium; November 18, 2020; Virtual Conference

37. The state of women in academic medicine. Association of American Medical Colleges. URL: https://www.aamc.org/
data-reports/data/2018-2019-state-women-academic-medicine-exploring-pathways-equity [accessed 2023-08-02]

JMIR Med Educ 2023 | vol. 9 | e51494 | p. 5https://mededu.jmir.org/2023/1/e51494
(page number not for citation purposes)

Leung et alJMIR MEDICAL EDUCATION

XSL•FO
RenderX

http://dx.doi.org/10.1111/ablj.12198
https://openai.com/blog/chatgpt-plus
https://europepmc.org/abstract/MED/30993611
http://dx.doi.org/10.1007/s11606-019-04884-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30993611&dopt=Abstract
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2022.43143
http://dx.doi.org/10.1001/jamanetworkopen.2022.43143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36409501&dopt=Abstract
https://europepmc.org/abstract/MED/36409494
https://europepmc.org/abstract/MED/36409494
http://dx.doi.org/10.1001/jamanetworkopen.2022.43134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36409494&dopt=Abstract
https://europepmc.org/abstract/MED/28264090
http://dx.doi.org/10.1001/jamainternmed.2016.9616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28264090&dopt=Abstract
https://www.worldbank.org/en/news/feature/2019/01/24/gendered-languages-may-play-a-role-in-limiting-womens-opportunities-new-research-finds
https://www.worldbank.org/en/news/feature/2019/01/24/gendered-languages-may-play-a-role-in-limiting-womens-opportunities-new-research-finds
http://downloads.liwc.net.s3.amazonaws.com/LIWC2015_OperatorManual.pdf
https://www.liwc.app
https://europepmc.org/abstract/MED/31738723
http://dx.doi.org/10.5811/westjem.2019.9.44307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31738723&dopt=Abstract
http://dx.doi.org/10.1038/ngeo2819
http://dx.doi.org/10.1002/lary.26619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28786169&dopt=Abstract
http://dx.doi.org/10.1016/j.jamcollsurg.2018.12.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30630084&dopt=Abstract
https://www.catalyst.org/biascorrect-install/
https://benschmidt.org/profGender/
https://www.tomforth.co.uk/genderbias/
https://www.tomdavenport.com/ai-and-the-future-of-work-what-we-know-today/
https://www.tomdavenport.com/ai-and-the-future-of-work-what-we-know-today/
http://dx.doi.org/10.1148/radiol.230163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36700838&dopt=Abstract
https://openai.com/blog/chatgpt
https://ai.meta.com/blog/llama-2/
http://dx.doi.org/10.3390/socsci12030148
https://arxiv.org/ftp/arxiv/papers/2301/2301.01768.pdf
https://arxiv.org/pdf/2303.17466.pdf
https://arxiv.org/pdf/2304.03738.pdf
https://www.aamc.org/data-reports/data/2018-2019-state-women-academic-medicine-exploring-pathways-equity
https://www.aamc.org/data-reports/data/2018-2019-state-women-academic-medicine-exploring-pathways-equity
http://www.w3.org/Style/XSL
http://www.renderx.com/


38. Joseph MM, Ahasic AM, Clark J, Templeton K. State of women in medicine: History, challenges, and the benefits of a
diverse workforce. Pediatrics 2021 Sep 01;148(Suppl 2):e2021051440C [doi: 10.1542/peds.2021-051440C] [Medline:
34470878]

39. Richter KP, Clark L, Wick JA, Cruvinel E, Durham D, Shaw P, et al. Women physicians and promotion in academic
medicine. N Engl J Med 2020 Nov 26;383(22):2148-2157 [doi: 10.1056/NEJMsa1916935] [Medline: 33252871]

40. Jackson J, Landis G, Baskin PK, Hadsell KA, English M, CSE Editorial Policy Committee. CSE guidance on machine
learning and artificial intelligence tools. Science Editor 2023 May 1;46(2):se-d-4602-07 [doi: 10.36591/se-d-4602-07]

41. Zielinski C, Winker MA, Aggarwal R, Ferris LE, Heinemann M, Lapeña JFJ, WAME Board. Chatbots, generative AI, and
scholarly manuscripts. World Association of Medical Editors. 2023. URL: https://wame.org/page3.php?id=106 [accessed
2023-08-08]

42. Stokel-Walker C. ChatGPT listed as author on research papers: many scientists disapprove. Nature 2023
Jan;613(7945):620-621 [doi: 10.1038/d41586-023-00107-z] [Medline: 36653617]

43. Drage E, Mackereth K. Does AI debias recruitment? Race, gender, and AI's "Eradication of Difference". Philos Technol
2022;35(4):89 [FREE Full text] [doi: 10.1007/s13347-022-00543-1] [Medline: 36246553]

44. Steinpreis RE, Anders KA, Ritzke D. The impact of gender on the review of the curricula vitae of job applicants and tenure
candidates: A national empirical study. Sex Roles 1999 Oct;41:509-528 [doi: 10.1023/A:1018839203698]

45. Wenneras C, Wold A. Nepotism and sexism in peer-review. Nature 1997 May 22;387(6631):341-343 [doi: 10.1038/387341a0]
[Medline: 9163412]

46. Automated employment decision tools. NYC311. URL: https://portal.311.nyc.gov/article/?kanumber=KA-03552 [accessed
2023-08-02]

47. Thakur V. Unveiling gender bias in terms of profession across LLMs: Analyzing and addressing sociological implications.
arXiv. Preprint posted online on July 18, 2023. [FREE Full text]

48. Rodriguez N, Kintzer E, List J, Lypson M, Grochowalski JH, Marantz PR, et al. Implicit bias recognition and management:
Tailored instruction for faculty. J Natl Med Assoc 2021 Oct;113(5):566-575 [FREE Full text] [doi:
10.1016/j.jnma.2021.05.003] [Medline: 34140145]

49. Hemmer PA, Karani R. Let's face it: We are biased, and it should not be that way. J Gen Intern Med 2019 May;34(5):649-651
[FREE Full text] [doi: 10.1007/s11606-019-04923-w] [Medline: 30993617]

50. Gerull KM, Loe M, Seiler K, McAllister J, Salles A. Assessing gender bias in qualitative evaluations of surgical residents.
Am J Surg 2019 Feb;217(2):306-313 [FREE Full text] [doi: 10.1016/j.amjsurg.2018.09.029] [Medline: 30343879]

51. Smith DG, Rosenstein JE, Nikolov MC, Chaney DA. The power of language: Gender, status, and agency in performance
evaluations. Sex Roles 2018 May 3;80:159-171 [doi: 10.1007/s11199-018-0923-7]

52. Sheffield V, Hartley S, Stansfield RB, Mack M, Blackburn S, Vaughn VM, et al. Gendered expectations: the impact of
gender, evaluation language, and clinical setting on resident trainee assessment of faculty performance. J Gen Intern Med
2022 Mar;37(4):714-722 [FREE Full text] [doi: 10.1007/s11606-021-07093-w] [Medline: 34405349]

53. Ross DA, Boatright D, Nunez-Smith M, Jordan A, Chekroud A, Moore EZ. Differences in words used to describe racial
and gender groups in medical student performance evaluations. PLoS One 2017 Aug 09;12(8):e0181659 [FREE Full text]
[doi: 10.1371/journal.pone.0181659] [Medline: 28792940]

54. Rojek AE, Khanna R, Yim JWL, Gardner R, Lisker S, Hauer KE, et al. Differences in narrative language in evaluations of
medical students by gender and under-represented minority status. J Gen Intern Med 2019 May;34(5):684-691 [FREE Full
text] [doi: 10.1007/s11606-019-04889-9] [Medline: 30993609]

55. Stack TJ, Berk GA, Ho TD, Zeatoun A, Kong KA, Chaskes MB, et al. Racial and ethnic bias in letters of recommendation
and personal statements for application to otolaryngology residency. ORL J Otorhinolaryngol Relat Spec 2023;85(3):141-149
[doi: 10.1159/000529795] [Medline: 37040732]

56. Jiang Z, Xu FF, Araki J, Neubig G. How can we know what language models know? Trans Assoc Comput Linguist
2020;8:423-438 [doi: 10.1162/tacl_a_00324]

57. Bates C, Gordon L, Travis E, Chatterjee A, Chaudron L, Fivush B, et al. Striving for gender equity in academic medicine
careers: A call to action. Acad Med 2016 Aug;91(8):1050-1052 [FREE Full text] [doi: 10.1097/ACM.0000000000001283]
[Medline: 27332868]

58. Leung TI, Barrett E, Lin TL, Moyer DV. Advancing from perception to reality: How to accelerate and achieve gender
equity now. Perspect Med Educ 2019 Dec;8(6):317-319 [FREE Full text] [doi: 10.1007/s40037-019-00545-4] [Medline:
31755023]

59. Sagar A, Henry T, Shroff S, Leung TI. Best practices: Reading between the lines to promote diversity, equity, and inclusion.
SGIM Forum. URL: https://connect.sgim.org/sgimforum/viewdocument/reading-between-the-lines-to-promo [accessed
2023-06-11]

60. Leung T, Sagar A, Henry TL, Shroff S. SGIM2022: Recognizing and reducing bias in letters of support and performance
evaluations in 360 degrees. 2023 Presented at: 2022 Annual Meeting of the Society of General Internal Medicine; April 9,
2022; Orlando, FL [doi: 10.6084/M9.FIGSHARE.22093343.V1]

JMIR Med Educ 2023 | vol. 9 | e51494 | p. 6https://mededu.jmir.org/2023/1/e51494
(page number not for citation purposes)

Leung et alJMIR MEDICAL EDUCATION

XSL•FO
RenderX

http://dx.doi.org/10.1542/peds.2021-051440C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34470878&dopt=Abstract
http://dx.doi.org/10.1056/NEJMsa1916935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33252871&dopt=Abstract
http://dx.doi.org/10.36591/se-d-4602-07
https://wame.org/page3.php?id=106
http://dx.doi.org/10.1038/d41586-023-00107-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36653617&dopt=Abstract
https://europepmc.org/abstract/MED/36246553
http://dx.doi.org/10.1007/s13347-022-00543-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36246553&dopt=Abstract
http://dx.doi.org/10.1023/A:1018839203698
http://dx.doi.org/10.1038/387341a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9163412&dopt=Abstract
https://portal.311.nyc.gov/article/?kanumber=KA-03552
https://arxiv.org/pdf/2307.09162.pdf
https://europepmc.org/abstract/MED/34140145
http://dx.doi.org/10.1016/j.jnma.2021.05.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34140145&dopt=Abstract
https://europepmc.org/abstract/MED/30993617
http://dx.doi.org/10.1007/s11606-019-04923-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30993617&dopt=Abstract
https://europepmc.org/abstract/MED/30343879
http://dx.doi.org/10.1016/j.amjsurg.2018.09.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30343879&dopt=Abstract
http://dx.doi.org/10.1007/s11199-018-0923-7
https://europepmc.org/abstract/MED/34405349
http://dx.doi.org/10.1007/s11606-021-07093-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34405349&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0181659
http://dx.doi.org/10.1371/journal.pone.0181659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28792940&dopt=Abstract
https://europepmc.org/abstract/MED/30993609
https://europepmc.org/abstract/MED/30993609
http://dx.doi.org/10.1007/s11606-019-04889-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30993609&dopt=Abstract
http://dx.doi.org/10.1159/000529795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37040732&dopt=Abstract
http://dx.doi.org/10.1162/tacl_a_00324
https://europepmc.org/abstract/MED/27332868
http://dx.doi.org/10.1097/ACM.0000000000001283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27332868&dopt=Abstract
https://link.springer.com/article/10.1007/s40037-019-00545-4
http://dx.doi.org/10.1007/s40037-019-00545-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31755023&dopt=Abstract
https://connect.sgim.org/sgimforum/viewdocument/reading-between-the-lines-to-promo
http://dx.doi.org/10.6084/M9.FIGSHARE.22093343.V1
http://www.w3.org/Style/XSL
http://www.renderx.com/


Abbreviations
AI: artificial intelligence
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